1,997 research outputs found

    Morphological development and cytochrome c oxidase activity in Streptomyces lividans are dependent on the action of a copper bound Sco protein

    Get PDF
    Copper has an important role in the life cycle of many streptomycetes, stimulating the developmental switch between vegetative mycelium and aerial hyphae concomitant with the production of antibiotics. In streptomycetes, a gene encoding for a putative Sco-like protein has been identified and is part of an operon that contains two other genes predicted to handle cellular copper. We report on the Sco-like protein from Streptomyces lividans (Sco Sl ) and present a series of experiments that firmly establish a role for Sco Sl as a copper metallochaperone as opposed to a role as a thiol-disulphide reductase that has been assigned to other bacterial Sco proteins. Under low copper concentrations, a Δ sco mutant in S. lividans displays two phenotypes; the development switch between vegetative mycelium and aerial hyphae stalls and cytochrome c oxidase (CcO) activity is significantly decreased. At elevated copper levels, the development and CcO activity in the Δ sco mutant are restored to wild-type levels and are thus independent of Sco Sl . A CcO knockout reveals that morphological development is independent of CcO activity leading us to suggest that Sco Sl has at least two targets in S. lividans . We establish that one Sco Sl target is the dinuclear Cu A domain of CcO and it is the cupric form of Sco Sl that is functionally active. The mechanism of cupric ion capture by Sco Sl has been investigated, and an important role for a conserved His residue is identified. </jats:p

    Similarity of technical logics of cropping systems organization between conventional and recently converted organic farmers in a water catchment area

    Get PDF
    Organic farming is considered as a solution to preserve water quality in drinking water catchments. For local managers of these catchments it is thus important to identify conventional farmers for potential conversion to organic farming. The aim of this article is to assess technical similarity of conventional farmers concerned by a water catchment to organic farming. We build a typology of farmers based on technical logics related to cropping systems organization. We differentiated five types of farmers among 18 conventional dairy farmers and three recently converted organic farmers. According to our results, only two farmers can be considered as close to technical logics identified in organic farms. Nevertheless, we could identify partial technical similarities for two other farmer groups. These similarities may be useful for catchment managers to initiate transitions towards organic farming

    Organic farming to preserve water quality?Comparison of three emblematic cases of successful management of drinking water catchment area

    Get PDF
    Protecting water resources from pollutants generated by agricultural activities is becoming more strictly regulated in Europe today, with an obligation to achieveresults. This means that towns willing to improve quality of their domestic water supply are required to regulate farmers’ practices in the water catchment areas. In this paper, we studied three cases (Munich and Augsburg in Germany, and Lons-le-Saunier in France) often listed as successful initiatives/ experiences of preservation of water quality by local authorities that have developed coordination with farmers. In this paper, we carried out a comparative analysis of the construction of city-farmer agreements, based on in-depth surveys and with a particular focus on the role of conversion to organic farming in these agreements. We highlighted several significant differences between these three case studies, with regard to the delimitation of the city’s field of action, the nature of compensation proposed to the farmers, the direct involvement of the city council in the acquisition of land in the vulnerable zone, and the importance granted to organic farming. However, in all three cases we also found similarities, such as the importance, for successful city-farmer coordination, of a facilitator as an intermediary between the two parties, as well as dialogue and contracts that span sufficiently long periods. When these conditions are met, which is the case in the two German cities, the results on the water quality are positive. From this point of view, the German water utilities’ status as “private companies owned by the city” seems to be highly conducive to the introduction of truly environment-friendly practices by farmers. In contrast, in the French case, the greater weight of regulatory constraints on the establishment of direct relations with farmers tends to prevent any fluidity in modes of action and to trigger tensions. Finally, the specific study of the role of conversion to organic farming in the solutions proposed and accepted by the farmers highlights a number of factors needed for the territorial development of this typeof farming: a strong political will that translates into high financial incentives, guaranteed local markets for organic products, and necessary technical support. These factors nevertheless remain insufficient in two of the three case studies, and only the city of Munich, starting off with a particularly favourable situation, has been able to achieve a territorial development of organic farming in tandem with the preservation of its water resources

    On the relation between decoherence and spontaneous symmetry breaking

    Full text link
    We have recently shown that there is a limit to quantum coherence in many-particle spin qubits due to spontaneous symmetry breaking. These results were derived for the Lieb-Mattis spin model. Here we will show that the underlying mechanism of decoherence in systems with spontaneous symmetry breaking is in fact more general. We present here a generic route to finding the decoherence time associated with spontaneous symmetry breaking in many particle qubits, and subsequently we apply this approach to two model systems, indicating how the continuous symmetries in these models are spontaneously broken and discussing the relation of this symmetry breaking to the thin spectrum. We then present in detail the calculations that lead to the limit to quantum coherence, which is due to energy shifts in the thin spectrum.Comment: 14 pages, 5 figure

    Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of 2H2H-TaS2_2

    Get PDF
    We report an in-depth Angle Resolved Photoemission Spectroscopy (ARPES) study on 2H2H-TaS2_2, a canonical incommensurate Charge Density Wave (CDW) system. This study demonstrates that just as in related incommensurate CDW systems, 2H2H-TaSe2_2 and 2H2H-NbSe2_2, the energy gap (Δcdw\Delta_{\text{cdw}}\,) of 2H2H-TaS2_2 is localized along the K-centered Fermi surface barrels and is particle-hole asymmetric. The persistence of Δcdw\Delta_{\text{cdw}}\, even at temperatures higher than the CDW transition temperature Tcdw\it{T}_{\text{cdw}}\, in 2H2H-TaS2_2, reflects the similar pseudogap (PG) behavior observed previously in 2H2H-TaSe2_2 and 2H2H-NbSe2_2. However, in sharp contrast to 2H2H-NbSe2_2, where Δcdw\Delta_{\text{cdw}}\, is non-zero only in the vicinity of a few "hot spots" on the inner K-centered Fermi surface barrels, Δcdw\Delta_{\text{cdw}}\, in 2H2H-TaS2_2 is non-zero along the entirety of both K-centered Fermi surface barrels. Based on a tight-binding model, we attribute this dichotomy in the momentum dependence and the Fermi surface specificity of Δcdw\Delta_{\text{cdw}}\, between otherwise similar CDW compounds to the different orbital orientations of their electronic states that are involved in CDW pairing. Our results suggest that the orbital selectivity plays a critical role in the description of incommensurate CDW materials.Comment: 6 pages, 4 figure

    Superconductivity and hybrid soft modes in TiSe2_2

    Get PDF
    The competition between superconductivity and other ground states of solids is one of the challenging topics in condensed matter physics. Apart from high-temperature superconductors [1,2] this interplay also plays a central role in the layered transition-metal dichalcogenides, where superconductivity is stabilized by suppressing charge-density-wave order to zero temperature by intercalation [3] or applied pressure [4-7]. 1T-TiSe2_2 forms a prime example, featuring superconducting domes on intercalation as well as under applied pressure. Here, we present high energy-resolution inelastic x-ray scattering measurements of the CDW soft phonon mode in intercalated Cux_xTiSe2_2 and pressurized 1T-TiSe2_2 along with detailed ab-initio calculations for the lattice dynamical properties and phonon-mediated superconductivity. We find that the intercalation-induced superconductivity can be explained by a solely phonon-mediated pairing mechanism, while this is not possible for the superconducting phase under pressure. We argue that a hybridization of phonon and exciton modes in the pairing mechanism is necessary to explain the full observed temperature-pressure-intercalation phase diagram. These results indicate that 1T-TiSe2_2 under pressure is close to the elusive state of the excitonic insulator

    Quantum Critical Dynamics of A Qubit Coupled to An Isotropic Lipkin-Meshkov-Glick Bath

    Get PDF
    We explore a dynamic signature of quantum phase transition (QPT) in an isotropic Lipkin-Meshkov-Glick (LMG) model by studying the time evolution of a central qubit coupled to it. We evaluate exactly the time-dependent purity, which can be used to measure quantum coherence, of the central qubit. It is found that distinctly different behaviors of the purity as a function of the parameter reveal clearly the QPT point in the system. It is also clarified that the present model is equivalent to an anti Jaynes-Cummings model under certain conditions.Comment: 8 pages, 4 figure

    Entanglement and transport through correlated quantum dot

    Full text link
    We study quantum entanglement in a single-level quantum dot in the linear-response regime. The results show, that the maximal quantum value of the conductance 2e^2/h not always match the maximal entanglement. The pairwise entanglement between the quantum dot and the nearest atom of the lead is also analyzed by utilizing the Wootters formula for charge and spin degrees of freedom separately. The coexistence of zero concurrence and the maximal conductance is observed for low values of the dot-lead hybridization. Moreover, the pairwise concurrence vanish simultaneously for charge and spin degrees of freedom, when the Kondo resonance is present in the system. The values of a Kondo temperature, corresponding to the zero-concurrence boundary, are also provided.Comment: Presented on the International Conference "Nanoelectronics '06", 7-8 January 2006, Lancaster, U

    Sporulation-specific cell division defects in ylmE mutants of Streptomyces coelicolor are rescued by additional deletion of ylmD

    Get PDF
    Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects
    corecore