2,925 research outputs found
Recommended from our members
Integration of Direct-Write (DW) and Ultrasonic Consolidation (UC) Technologies to Create Advanced Structures with Embedded Electrical Circuitry
In many instances conductive traces are needed in small, compact and enclosed areas.
However, with traditional manufacturing techniques, embedded electrical traces or antenna
arrays have not been a possibility. By integrating Direct Write and Ultrasonic Consolidation
technologies, electronic circuitry, antennas and other devices can be manufactured directly into a
solid metal structure and subsequently completely enclosed. This can achieve a significant
reduction in mass and volume of a complex electronic system without compromising
performance.Mechanical Engineerin
Eggplant and related species are promising genetic resources to dissect the plant immune response to Pseudomonas syringae and Xanthomonas euvesicatoria and to identify new resistance determinants
The apparent lack of durability of many resistance (R) genes highlights the need for the constant identification of new genetic sources of resistance for the breeding of new disease-resistant crop cultivars. To this end, we screened a collection of accessions of eggplant and close relatives for resistance against Pseudomonas syringae pv. tomato (Pto) and Xanthomonas euvesicatoria (Xeu), foliar plant pathogens of many solanaceous crops. Both pathogens caused substantial disease on most genotypes of eggplant and its relatives. Promisingly, however, some of the genotypes were fully or partially resistant to either of the pathogens, suggesting the presence of effective resistance determinants in these genotypes. Segregation of resistance to the growth of Xeu following infiltration in F2 progeny from a cross of a resistant and susceptible genotype suggests that resistance to Xeu is inherited as a multigenic trait. With regard to Pto, a mutant strain lacking all 28 functional type III secreted effectors, and a Pseudomonas fluorescens strain expressing a P. syringae type III secretion system (T3SS), both elicit a strong cell death response on most eggplant lines. Several genotypes thus appear to harbour a mechanism for the direct recognition of a component of the T3SS. Therefore, eggplant and its close relatives are promising resources to unravel novel aspects of plant immunity and to identify new candidate R genes that could be employed in other Solanace. (Résumé d'auteur
Recommended from our members
Nanotailoring Stereolithography Resins for Unique Applications using Carbon Nanotubes
Nanostructured materials and exploiting their properties in stereolithography (SL) may open
new markets for unique rapidly manufactured functional devices. Controlled amounts of multiwalled carbon nanotubes (MWCNTs) were successfully dispersed in SL epoxy-based resins and
complex three-dimensional (3D) parts were successfully fabricated by means of a multi-material
SL setup. The effect of the nanosized filler was evaluated using mechanical testing. Small
dispersions of MWCNTs resulted in significant effects on the physical properties of the
polymerized resin. A MWCNT concentration of .05 wt% (w/v) in DSM Somos® WaterShed™
11120 resin increased the ultimate tensile stress and fracture stress an average of 17% and 37%,
respectively. Electron microscopy was used to examine the morphology of the nanocomposite
and results showed affinity between the MWCNTs and SL resin and identified buckled
nanotubes that illustrated strong interfacial bonding. These improved physical properties may
provide opportunities for using nanocomposite SL resins in end-use applications. Varying types
and concentrations of nanomaterials can be used to tailor existing SL resins for particular
applications.Mechanical Engineerin
A new multi locus variable number of tandem repeat analysis scheme for epidemiological surveillance of Xanthomonas vasicola pv. musacearum, the plant pathogen causing bacterial wilt on banana and enset
Xanthomonas vasicola pv. musacearum (Xvm) which causes Xanthomonas wilt (XW) on banana (Musa accuminata x balbisiana) and enset (Ensete ventricosum), is closely related to the species Xanthomonas vasicola that contains the pathovars vasculorum (Xvv) and holcicola (Xvh), respectively pathogenic to sugarcane and sorghum. Xvm is considered a monomorphic bacterium whose intra-pathovar diversity remains poorly understood. With the sudden emergence of Xvm within east and central Africa coupled with the unknown origin of one of the two sublineages suggested for Xvm, attention has shifted to adapting technologies that focus on identifying the origin and distribution of the genetic diversity within this pathogen. Although microbiological and conventional molecular diagnostics have been useful in pathogen identification. Recent advances have ushered in an era of genomic epidemiology that aids in characterizing monomorphic pathogens. To unravel the origin and pathways of the recent emergence of XW in Eastern and Central Africa, there was a need for a genotyping tool adapted for molecular epidemiology. Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA) is able to resolve the evolutionary patterns and invasion routes of a pathogen. In this study, we identified microsatellite loci from nine published Xvm genome sequences. Of the 36 detected microsatellite loci, 21 were selected for primer design and 19 determined to be highly typeable, specific, reproducible and polymorphic with two- to four- alleles per locus on a sub-collection. The 19 markers were multiplexed and applied to genotype 335 Xvm strains isolated from seven countries over several years. The microsatellite markers grouped the Xvm collection into three clusters; with two similar to the SNP-based sublineages 1 and 2 and a new cluster 3, revealing an unknown diversity in Ethiopia. Five of the 19 markers had alleles present in both Xvm and Xanthomonas vasicola pathovars holcicola and vasculorum, supporting the phylogenetic closeliness of these three pathovars. Thank to the public availability of the haplotypes on the MLVABank database, this highly reliable and polymorphic genotyping tool can be further used in a transnational surveillance network to monitor the spread and evolution of XW throughout Africa.. It will inform and guide management of Xvm both in banana-based and enset-based cropping systems. Due to the suitability of MLVA-19 markers for population genetic analyses, this genotyping tool will also be used in future microevolution studies
A reference database of Ralstonia solanacearum egl-mutS haplotypes for global epidemiological surveillance of bacterial wilts
A highly specific tool for identification of Xanthomonas vasicola pv. musacearum based on five Xvm-specific coding sequences
Xanthomonas vasicola pv. musacearum (Xvm) is a bacterial pathogen responsible for the economically important Xanthomonas wilt disease on banana and enset crops in Sub-Saharan Africa. Given that the symptoms are similar to those of other diseases, molecular diagnosis is essential to unambiguously identify this pathogen and distinguish it from closely related strains not pathogenic on these hosts. Currently, Xvm identification is based on polymerase chain reaction (PCR) with GspDm primers, targeting the gene encoding general secretory protein D. Experimental results and examination of genomic sequences revealed poor specificity of the GspDm PCR. Here, we present and validate five new Xvm-specific primers amplifying only Xvm strains
Activity and Process Stability of Purified Green Pepper (Capsicum annuum) Pectin Methylesterase
Pectin methylesterase (PME) from green bell peppers (Capsicum annuum) was extracted and purified by affinity chromatography on a CNBr-Sepharose-PMEI column. A single protein peak with pectin methylesterase activity was observed. For the pepper PME, a biochemical characterization in terms of molar mass (MM), isoelectric points (pI), and kinetic parameters for activity and thermostability was performed. The optimum pH for PME activity at 22 °C was 7.5, and its optimum temperature at neutral pH was between 52.5 and 55.0 °C. The purified pepper PME required the presence of 0.13 M NaCl for optimum activity. Isothermal inactivation of purified pepper PME in 20 mM Tris buffer (pH 7.5) could be described by a fractional conversion model for lower temperatures (55?57 °C) and a biphasic model for higher temperatures (58?70 °C). The enzyme showed a stable behavior toward high-pressure/temperature treatments. Keywords: Capsicum annuum; pepper; pectin methylesterase; purification; characterization; thermal and high-pressure stabilit
- …
