111 research outputs found
Electronic properties of gated triangular graphene quantum dots: Magnetism, correlations, and geometrical effects
We present a theory of electronic properties of gated triangular graphene
quantum dots with zigzag edges as a function of size and carrier density. We
focus on electronic correlations, spin and geometrical effects using a
combination of atomistic tight-binding, Hartree-Fock and configuration
interaction methods (TB+HF+CI) including long range Coulomb interactions. The
single particle energy spectrum of triangular dots with zigzag edges exhibits a
degenerate shell at the Fermi level with a degeneracy N_{edge} proportional to
the edge size. We determine the effect of the electron-electron interactions on
the ground state, the total spin and the excitation spectrum as a function of a
shell filling and the degeneracy of the shell using TB+HF+CI for N_{edge} < 12
and approximate CI method for N_{edge}\geq 12. For a half-filled neutral shell
we find spin polarized ground state for structures up to N=500 atoms in
agreement with previous {\it ab initio} and mean-field calculations, and in
agreement with Lieb's theorem for a Hubbard model on a bipartite lattice.
Adding a single electron leads to the complete spin depolarization for
N_{edge}\leq 9. For larger structures, the spin depolarization is shown to
occur at different filling factors. Away from half-fillings excess
electrons(holes) are shown to form Wigner-like spin polarized triangular
molecules corresponding to large gaps in the excitation spectrum. The validity
of conclusions is assessed by a comparison of results obtained from different
levels of approximations. While for the charge neutral system all methods give
qualitatively similar results, away from the charge neutrality an inclusion of
all Coulomb scattering terms is necessary to produce results presented here.Comment: 13 pages, 13 figure
Fermions out of Dipolar Bosons in the lowest Landau level
In the limit of very fast rotation atomic Bose-Einstein condensates may
reside entirely in the lowest two-dimensional Landau level (LLL). For small
enough filling factor of the LLL, one may have formation of fractional quantum
Hall states. We investigate the case of bosons with dipolar interactions as may
be realized with Chromium-52 atoms. We show that at filling factor equal to
unity the ground state is a Moore-Read (a.k.a Pfaffian) paired state as is the
case of bosons with purely s-wave scattering interactions. This Pfaffian state
is destabilized when the interaction in the s-wave channel is small enough and
the ground state is a stripe phase with unidimensional density modulation. For
filling factor 1/3, we show that there is formation of a Fermi sea of
``composite fermions''. These composites are made of one boson bound with three
vortices. This phase has a wide range of stability and the effective mass of
the fermions depends essentially only of the scattering amplitude in momentum
channels larger or equal to 2. The formation of such a Fermi sea opens up a new
possible route to detection of the quantum Hall correlations.Comment: 12 pages, 5 figures, published versio
Energy Spectra for Fractional Quantum Hall States
Fractional quantum Hall states (FQHS) with the filling factor nu = p/q of q <
21 are examined and their energies are calculated. The classical Coulomb energy
is evaluated among many electrons; that energy is linearly dependent on 1/nu.
The residual binding energies are also evaluated. The electron pair in nearest
Landau-orbitals is more affected via Coulomb transition than an electron pair
in non-nearest orbitals. Each nearest electron pair can transfer to some empty
orbital pair, but it cannot transfer to the other empty orbital pair because of
conservation of momentum. Counting the numbers of the allowed and forbidden
transitions, the binding energies are evaluated for filling factors of 126
fraction numbers. Gathering the classical Coulomb energy and the pair
transition energy, we obtain the spectrum of energy versus nu. This energy
spectrum elucidates the precise confinement of Hall resistance at specific
fractional filling factors.Comment: 5 pages, 3 figure
Charged exctions in the fractional quantum Hall regime
We study the photoluminescence spectrum of a low density ()
two-dimensional electron gas at high magnetic fields and low temperatures. We
find that the spectrum in the fractional quantum Hall regime can be understood
in terms of singlet and triplet charged-excitons. We show that these spectral
lines are sensitive probes for the electrons compressibility. We identify the
dark triplet charged-exciton and show that it is visible at the spectrum at
K. We find that its binding energy scales like , where is
the magnetic length, and it crosses the singlet slightly above 15 T.Comment: 10 pages, 5 figure
Ultrafast non-linear optical signal from a single quantum dot: exciton and biexciton effects
We present results on both the intensity and phase-dynamics of the transient
non-linear optical response of a single quantum dot (SQD).
The time evolution of the Four Wave Mixing (FWM) signal on a subpicosecond
time scale is dominated by biexciton effects. In particular, for the
cross-polarized excitation case a biexciton bound state is found. In this
latter case, mean-field results are shown to give a poor description of the
non-linear optical signal at small times. By properly treating exciton-exciton
effects in a SQD, coherent oscillations in the FWM signal are clearly
demonstrated. These oscillations, with a period corresponding to the inverse of
the biexciton binding energy, are correlated with the phase dynamics of the
system's polarization giving clear signatures of non-Markovian effects in the
ultrafast regime.Comment: 10 pages, 3 figure
Analytic Coulomb matrix elements in the lowest Landau level in disk geometry
Using Darling's theorem on products of generalized hypergeometric series an
analytic expression is obtained for the Coulomb matrix elements in the lowest
Landau level in the representation of angular momentum. The result is important
in the studies of Fractional Quantum Hall effect (FQHE) in disk geometry.
Matrix elements are expressed as simple finite sums of positive terms,
eliminating the need to approximate these quantities with slowly-convergent
series. As a by-product, an analytic representation for certain integals of
products of Laguerre polynomials is obtained.Comment: Accepted to J. Math. Phys.; 3 pages revtex, no figure
Resonant Enhancement of Inelastic Light Scattering in the Fractional Quantum Hall Regime at
Strong resonant enhancements of inelastic light scattering from the long
wavelength inter-Landau level magnetoplasmon and the intra-Landau level spin
wave excitations are seen for the fractional quantum Hall state at .
The energies of the sharp peaks (FWHM ) in the profiles of
resonant enhancement of inelastic light scattering intensities coincide with
the energies of photoluminescence bands assigned to negatively charged exciton
recombination. To interpret the observed enhancement profiles, we propose
three-step light scattering mechanisms in which the intermediate resonant
transitions are to states with charged excitonic excitations.Comment: 5 pages, 5 figure
Definitive observation of the dark triplet ground state of charged excitons in high magnetic fields
The ground state of negatively charged excitons (trions) in high magnetic
fields is shown to be a dark triplet state, confirming long-standing
theoretical predictions. Photoluminescence (PL), reflection, and PL excitation
spectroscopy of CdTe quantum wells reveal that the dark triplet trion has lower
energy than the singlet trion above 24 Tesla. The singlet-triplet crossover is
"hidden" (i.e., the spectral lines themselves do not cross due to different
Zeeman energies), but is confirmed by temperature-dependent PL above and below
24 T. The data also show two bright triplet states.Comment: 4 figure
Resonant Raman scattering off neutral quantum dots
Resonant inelastic (Raman) light scattering off neutral GaAs quantum dots
which contain a mean number, N=42, of electron-hole pairs is computed. We find
Raman amplitudes corresponding to strongly collective final states
(charge-density excitations) of similar magnitude as the amplitudes related to
weakly collective or single-particle excitations. As a function of the incident
laser frequency or the magnetic field, they are rapidly varying amplitudes. It
is argued that strong Raman peaks should come out in the spin-density channels,
not related to valence-band mixing effects in the intermediate states.Comment: Accepted in Physical Review
- …
