5,644 research outputs found
Signatures of Hong-Ou-Mandel Interference at Microwave Frequencies
Two-photon quantum interference at a beam splitter, commonly known as
Hong-Ou-Mandel interference, was recently demonstrated with
\emph{microwave-frequency} photons by Lang \emph{et
al.}\,\cite{lang:microwaveHOM}. This experiment employed circuit QED systems as
sources of microwave photons, and was based on the measurement of second-order
cross-correlation and auto-correlation functions of the microwave fields at the
outputs of the beam splitter. Here we present the calculation of these
correlation functions for the cases of inputs corresponding to: (i) trains of
\emph{pulsed} Gaussian or Lorentzian single microwave photons, and (ii)
resonant fluorescent microwave fields from \emph{continuously-driven} circuit
QED systems. The calculations include the effects of the finite bandwidth of
the detection scheme. In both cases, the signature of two-photon quantum
interference is a suppression of the second-order cross-correlation function
for small delays. The experiment described in Ref.
\onlinecite{lang:microwaveHOM} was performed with trains of \emph{Lorentzian}
single photons, and very good agreement between the calculations and the
experimental data was obtained.Comment: 11 pages, 3 figure
Nonlinear metrology with a quantum interface
We describe nonlinear quantum atom-light interfaces and nonlinear quantum
metrology in the collective continuous variable formalism. We develop a
nonlinear effective Hamiltonian in terms of spin and polarization collective
variables and show that model Hamiltonians of interest for nonlinear quantum
metrology can be produced in Rb ensembles. With these Hamiltonians,
metrologically relevant atomic properties, e.g. the collective spin, can be
measured better than the "Heisenberg limit" . In contrast to other
proposed nonlinear metrology systems, the atom-light interface allows both
linear and non-linear estimation of the same atomic quantities.Comment: 8 pages, 1 figure
Disease-induced resource constraints can trigger explosive epidemics
Advances in mathematical epidemiology have led to a better understanding of
the risks posed by epidemic spreading and informed strategies to contain
disease spread. However, a challenge that has been overlooked is that, as a
disease becomes more prevalent, it can limit the availability of the capital
needed to effectively treat those who have fallen ill. Here we use a simple
mathematical model to gain insight into the dynamics of an epidemic when the
recovery of sick individuals depends on the availability of healing resources
that are generated by the healthy population. We find that epidemics spiral out
of control into "explosive" spread if the cost of recovery is above a critical
cost. This can occur even when the disease would die out without the resource
constraint. The onset of explosive epidemics is very sudden, exhibiting a
discontinuous transition under very general assumptions. We find analytical
expressions for the critical cost and the size of the explosive jump in
infection levels in terms of the parameters that characterize the spreading
process. Our model and results apply beyond epidemics to contagion dynamics
that self-induce constraints on recovery, thereby amplifying the spreading
process.Comment: 24 pages, 6 figure
Non-linear effects on Turing patterns: time oscillations and chaos.
We show that a model reaction-diffusion system with two species in a monostable regime and over a large region of parameter space, produces Turing patterns coexisting with a limit cycle which cannot be discerned from the linear analysis. As a consequence, Turing patterns oscillate in time, a phenomenon which is expected to occur only in a three morphogen system. When varying a single parameter, a series of bifurcations lead to period doubling, quasi-periodic and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos is identified. We also examined the Turing conditions for obtaining a diffusion driven instability and discovered that the patterns obtained are not necessarily stationary for certain values of the diffusion coefficients. All this results demonstrates the limitations of the linear analysis for reaction-diffusion systems
Count three for wear able computers
This paper is a postprint of a paper submitted to and accepted for publication in the Proceedings of the IEE Eurowearable 2003 Conference, and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library.
A revised version of this paper was also published in Electronics Systems and Software, also subject to Institution of Engineering and Technology Copyright. The copy of record is also available at the IET Digital Library.A description of 'ubiquitous computer' is presented. Ubiquitous computers imply portable computers embedded into everyday objects, which would replace personal computers. Ubiquitous computers can be mapped into a three-tier scheme, differentiated by processor performance and flexibility of function. The power consumption of mobile devices is one of the most important design considerations. The size of a wearable system is often a design limitation
Propagation of sound through a sheared flow
Sound generated in a moving fluid must propagate through a shear layer in order to be measured by a fixed instrument. These propagation effects were evaluated for noise sources typically associated with single and co-flowing subsonic jets and for subcritical flow over airfoils in such jets. The techniques for describing acoustic propagation fall into two categories: geometric acoustics and wave acoustics. Geometric acoustics is most convenient and accurate for high frequency sound. In the frequency range of interest to the present study (greater than 150 Hz), the geometric acoustics approach was determined to be most useful and practical
Continuous quantum non-demolition measurement of Fock states of a nanoresonator using feedback-controlled circuit QED
We propose a scheme for the quantum non-demolition (QND) measurement of Fock
states of a nanomechanical resonator via feedback control of a coupled circuit
QED system. A Cooper pair box (CPB) is coupled to both the nanoresonator and
microwave cavity. The CPB is read-out via homodyne detection on the cavity and
feedback control is used to effect a non-dissipative measurement of the CPB.
This realizes an indirect QND measurement of the nanoresonator via a
second-order coupling of the CPB to the nanoresonator number operator. The
phonon number of the Fock state may be determined by integrating the stochastic
master equation derived, or by processing of the measurement signal.Comment: 5 pages, 3 figure
- …
