137 research outputs found
Recommended from our members
Relationship between lean body mass and serum renal biomarkers in healthy dogs
Background:
Symmetric dimethylarginine (SDMA) is an accurate and precise biomarker for estimating glomerular filtration rate (GFR) in humans and cats. Serum creatinine (sCr) also correlates with GFR, but has limitations as a biomarker of renal function because nonrenal factors can influence its concentration.
Hypothesis:
Differences in lean body mass (LBM) influence sCr, but not serum SDMA concentrations.
Animals:
Forty-one healthy Beagles, mean age 9.9 years (range: 3.1–14.8 years), were studied over a 6 month period.
Methods:
Serum biomarkers of renal function were measured prospectively at baseline, and 1, 3, and 6 months. SDMA concentrations were measured by liquid chromatography-mass spectroscopy and sCr concentrations by enzymatic colorimetry. Body composition was determined by dual energy x-ray absorptiometry.
Results:
LBM (P females; P = .02). Mature adult dogs (<8 years) had greater LBM compared with geriatric dogs (≥8 years; P < .001).
Conclusion and Clinical Importance:
sCr concentrations, but not SDMA concentrations, are influenced by LBM, which limits sCr utility as a biomarker for monitoring renal function in dogs with decreased LBM. Reductions in LBM can lower sCr concentration and overestimate GFR. SDMA concentrations, but not sCr concentrations were influenced by time on food. SDMA could have clinical advantages over sCr in monitoring response to nutritional interventions.Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine. This is the publisher’s final pdf. The published article can be found at: http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291939-1676Keywords: Creatinine, Canine, Urea nitrogen, Symmetric dimethylarginin
Recommended from our members
Positive Impact of Nutritional Interventions on Serum Symmetric Dimethylarginine and Creatinine Concentrations in Client-Owned Geriatric Dogs
A prospective study was conducted in client-owned geriatric dogs to evaluate the short-term effects of a test food on serum symmetric dimethylarginine (SDMA) and creatinine (Cr) concentrations. Test food contained functional lipids (fish oil), antioxidants (lipoic acid, vitamins C and E), L-carnitine, botanicals (fruits and vegetables), controlled sodium concentration, and high quality protein sources (high bioavailability and an ideal amino acid composition). Dogs (n = 210) were fed either test food or owner’s-choice foods (non-nutritionally controlled cohort). Dogs were included based on age and body weight: small (6.8 to 11.4 kg) and medium dogs (11.5 to 22.7 kg) were ≥ 9 years, whereas dogs >22.7 kg were ≥ 7 years at baseline. At baseline, all dogs had to have serum Cr concentrations within the reference interval and be free of chronic disease. Renal function biomarkers and urinalysis results at baseline, and after consuming test food or owner’s-choice foods for 3 and 6 months, were evaluated. Only dogs consuming test food showed significant decreases in serum SDMA and Cr concentrations (both P ≤ 0.05) across time. At baseline or during the 6-month feeding trial, 18 dogs (8.6%) had increased serum SDMA, but normal serum Cr, consistent with IRIS Stage 1 chronic kidney disease. This included 9 dogs fed test food and 9 dogs fed owner’s-choice foods. Compared with baseline, after feeding 9 dogs test food for 6 months, serum SDMA decreased in 8 dogs and increased in 1 dog. After feeding 9 dogs owner’s-choice foods for 6 months, serum SDMA decreased in 4 dogs and increased in 4 dogs (remained stable in 1 dog). The decreases in serum SDMA and Cr concentrations were significant (both P = 0.03) only for dogs fed test food. These results suggest that nonazotemic dogs with elevated serum SDMA (early renal insufficiency) when fed a test food designed to promote healthy aging are more likely to demonstrate improved renal function compared with dogs fed owner’s-choice foods
Recommended from our members
Positive Impact of Nutritional Interventions on Serum Symmetric Dimethylarginine and Creatinine Concentrations in Client-Owned Geriatric Cats
A prospective study was conducted in client-owned geriatric cats to evaluate the short- term effects of a test food on serum symmetric dimethylarginine (SDMA) and creatinine (Cr) concentrations. Test food contained functional lipids (fish oil), antioxidants (vitamins C and E), L-carnitine, botanicals (vegetables), highly bioavailable protein, and amino acid supplements. Cats (n = 80) were fed either test food or owner’s-choice foods (non-nutritionally controlled cohort). Cats were included based on age (≥ 9 years), indoor only, neutered, and free of chronic disease. At baseline, all cats had serum Cr concentrations within the reference interval. Renal function biomarkers and urinalysis results at baseline and after consuming test food or owner’s-choice foods for 3 and 6 months were evaluated. Cats consuming test food showed significant decreases in serum Cr and BUN concentrations across time. Overall, cats consuming owner’s-choice foods showed significant increases in serum SDMA concentrations at 3 and 6 months compared with baseline (P ≤ 0.05), whereas in cats consuming test food serum SDMA concentrations did not change. At baseline or during the 6-month feeding trial, 23 (28.8%) cats had increased serum SDMA, but normal serum Cr consistent with IRIS Stage 1 chronic kidney disease. This included 6 cats fed test food and 17 cats fed owner’s-choice foods. In the 6 cats fed test food, serum SDMA decreased in 3 cats and remained stable in 1 cat, whereas in the 17 cats fed owner’s-choice foods, serum SDMA increased in 13 cats and decreased or remained stable in 4 cats. The increase in serum SDMA concentration was significant (P = 0.02) only for cats fed owner’s-choice foods. These results suggest that nonazotemic cats with elevated serum SDMA (early renal insufficiency) when fed a food designed to promote healthy aging are more likely to demonstrate stable renal function compared with cats fed owner’s-choice foods. Cats fed owner’s-choice foods were more likely to demonstrate progressive renal insufficiency
Using GIS in Ecological Management: Green Assessment of the Impacts of Petroleum Activities in the State of Texas
Geo-information technologies are valuable tools for ecological assessment in stressed environments. Visualizing natural features prone to disasters from the oil sector spatially not only helps in focusing the scope of environmental management with records of changes in affected areas, but it also furnishes information on the pace at which resource extraction affects nature. Notwithstanding the recourse to ecosystem protection, geo-spatial analysis of the impacts remains sketchy. This paper uses GIS and descriptive statistics to assess the ecological impacts of petroleum extraction activities in Texas. While the focus ranges from issues to mitigation strategies, the results point to growth in indicators of ecosystem decline
The Applications of GIS in the Analysis of the Impacts of Human Activities on South Texas Watersheds
With water resource planning assuming greater importance in environmental protection efforts, analyzing the health of agricultural watersheds using Geographic Information Systems (GIS) becomes essential for decision-makers in Southern Texas. Within the area, there exist numerous threats from conflicting land uses. These include the conversion of land formerly designated for agricultural purposes to other uses. Despite current efforts, anthropogenic factors are greatly contributing to the degradation of watersheds. Additionally, the activities of waste water facilities located in some of the counties, rising populations, and other socioeconomic variables are negatively impacting the quality of water in the agricultural watersheds. To map the location of these stressors spatially and the extent of their impacts across time, the paper adopts a mix scale method of temporal spatial analysis consisting of simple descriptive statistics. In terms of objectives, this research provides geo-spatial analysis of the effects of human activities on agricultural watersheds in Southern Texas and the factors fuelling the concerns under the purview of watershed management. The results point to growing ecosystem decline across time and a geographic cluster of counties experiencing environmental stress. Accordingly, the emergence of stressors such as rising population, increased use of fertilizer treatments on farm land, discharges of atmospheric pollutants and the large presence of municipal and industrial waste treatment facilities emitting pathogens and pesticides directly into the agricultural watersheds pose a growing threat to the quality of the watershed ecosystem
Bluetongue Virus Serotype 1 Outbreak in the Basque Country (Northern Spain) 2007–2008. Data Support a Primary Vector Windborne Transport
BACKGROUND: Bluetongue (BT) is a vector-borne disease of ruminants that has expanded its traditional global distribution in the last decade. Recently, BTV-1 emerged in Southern Spain and caused several outbreaks in livestock reaching the north of the country. The aim of this paper was to review the emergence of BTV-1 in the Basque Country (Northern Spain) during 2007 and 2008 analyzing the possibility that infected Culicoides were introduced into Basque Country by winds from the infected areas of Southern Spain. METHODOLOGY/PRINCIPAL FINDINGS: We use a complex HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model to draw wind roses and backward wind trajectories. The analysis of winds showed September 28 to October 2 as the only period for the introduction of infected midges in the Basque Country. These wind trajectories crossed through the areas affected by serotype 1 on those dates in the South of the Iberian Peninsula. Additionally meteorological data, including wind speed and humidity, and altitude along the trajectories showed suitable conditions for Culicoides survival and dispersion. CONCLUSIONS/SIGNIFICANCE: An active infection in medium-long distance regions, wind with suitable speed, altitude and trajectory, and appropriate weather can lead to outbreaks of BTV-1 by transport of Culicoides imicola, not only over the sea (as reported previously) but also over the land. This shows that an additional factor has to be taken into account for the control of the disease which is currently essentially based on the assumption that midges will only spread the virus in a series of short hops. Moreover, the epidemiological and serological data cannot rule out the involvement of other Culicoides species in the spread of the infection, especially at a local level
An integrated WRF/HYSPLIT modeling approach for the assessment of PM2.5 source regions over the Mississippi Gulf Coast region
Fine particulate matter (PM(2.5)) is majorly formed by precursor gases, such as sulfur dioxide (SO(2)) and nitrogen oxides (NO(x)), which are emitted largely from intense industrial operations and transportation activities. PM(2.5) has been shown to affect respiratory health in humans. Evaluation of source regions and assessment of emission source contributions in the Gulf Coast region of the USA will be useful for the development of PM(2.5) regulatory and mitigation strategies. In the present study, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model driven by the Weather Research & Forecasting (WRF) model is used to identify the emission source locations and transportation trends. Meteorological observations as well as PM(2.5) sulfate and nitric acid concentrations were collected at two sites during the Mississippi Coastal Atmospheric Dispersion Study, a summer 2009 field experiment along the Mississippi Gulf Coast. Meteorological fields during the campaign were simulated using WRF with three nested domains of 36, 12, and 4 km horizontal resolutions and 43 vertical levels and validated with North American Mesoscale Analysis. The HYSPLIT model was integrated with meteorological fields derived from the WRF model to identify the source locations using backward trajectory analysis. The backward trajectories for a 24-h period were plotted at 1-h intervals starting from two observation locations to identify probable sources. The back trajectories distinctly indicated the sources to be in the direction between south and west, thus to have origin from local Mississippi, neighboring Louisiana state, and Gulf of Mexico. Out of the eight power plants located within the radius of 300 km of the two monitoring sites examined as sources, only Watson, Cajun, and Morrow power plants fall in the path of the derived back trajectories. Forward dispersions patterns computed using HYSPLIT were plotted from each of these source locations using the hourly mean emission concentrations as computed from past annual emission strength data to assess extent of their contribution. An assessment of the relative contributions from the eight sources reveal that only Cajun and Morrow power plants contribute to the observations at the Wiggins Airport to a certain extent while none of the eight power plants contribute to the observations at Harrison Central High School. As these observations represent a moderate event with daily average values of 5–8 μg m(−3) for sulfate and 1–3 μg m(−3) for HNO(3) with differences between the two spatially varied sites, the local sources may also be significant contributors for the observed values of PM(2.5)
Radiation Therapy at the End of-Life: Quality of Life and Financial Toxicity Considerations
- …
