30,457 research outputs found

    Length control of microtubules by depolymerizing motor proteins

    Get PDF
    In many intracellular processes, the length distribution of microtubules is controlled by depolymerizing motor proteins. Experiments have shown that, following non-specific binding to the surface of a microtubule, depolymerizers are transported to the microtubule tip(s) by diffusion or directed walk and, then, depolymerize the microtubule from the tip(s) after accumulating there. We develop a quantitative model to study the depolymerizing action of such a generic motor protein, and its possible effects on the length distribution of microtubules. We show that, when the motor protein concentration in solution exceeds a critical value, a steady state is reached where the length distribution is, in general, non-monotonic with a single peak. However, for highly processive motors and large motor densities, this distribution effectively becomes an exponential decay. Our findings suggest that such motor proteins may be selectively used by the cell to ensure precise control of MT lengths. The model is also used to analyze experimental observations of motor-induced depolymerization.Comment: Added section with figures and significantly expanded text, current version to appear in Europhys. Let

    Development of quality assurance methods for epoxy graphite prepreg

    Get PDF
    Quality assurance methods for graphite epoxy/prepregs were developed. Liquid chromatography, differential scanning calorimetry, and gel permeation chromatography were investigated. These methods were applied to a second prepreg system. The resin matrix formulation was correlated with mechanical properties. Dynamic mechanical analysis and fracture toughness methods were investigated. The chromatography and calorimetry techniques were all successfully developed as quality assurance methods for graphite epoxy prepregs. The liquid chromatography method was the most sensitive to changes in resin formulation. The were also successfully applied to the second prepreg system

    New light on the ‘Drummer of Tedworth’: conflicting narratives of witchcraft in Restoration England

    Get PDF
    This paper presents a definitive text of hitherto little-known early documents concerning ‘The Drummer of Tedworth’, a poltergeist case that occurred in 1662-3 and became famous not least due to its promotion by Joseph Glanvill in his demonological work, Saducismus Triumphatus. On the basis of these and other sources, it is shown how responses to the events at Tedworth evolved from anxious piety on the part of their victim, John Mompesson, to confident apologetic by Glanvill, before they were further affected by the emergence of articulate scepticism about the case

    Raising Tc in charge density wave superconductor ZrTe3 by Ni intercalation

    Full text link
    We report discovery of bulk superconductivity in Ni0.05ZrTe3 at Tc = 3.1 K, obtained through Ni intercalation. Superconductivity coexists with charge density wave (CDW) state with TCDW = 41 K. When compared to parent material ZrTe3, filamentary superconducting transition is substantially increased whereas TCDW was suppressed. The analysis of superconducting state indicates that Ni0.05ZrTe3 is an intermediately coupled superconductor.Comment: 5 pages, 5 figure

    Attracted Diffusion-Limited Aggregation

    Full text link
    In this paper, we present results of extensive Monte Carlo simulations of diffusion-limited aggregation (DLA) with a seed placed on an attractive plane as a simple model in connection with the electrical double layers. We compute the fractal dimension of the aggregated patterns as a function of the attraction strength \alpha. For the patterns grown in both two and three dimensions, the fractal dimension shows a significant dependence on the attraction strength for small values of \alpha, and approaches to that of the ordinary two-dimensional (2D) DLA in the limit of large \alpha. For non-attracting case with \alpha=1, our results in three dimensions reproduce the patterns of 3D ordinary DLA, while in two dimensions our model leads to formation of a compact cluster with dimension two. For intermediate \alpha, the 3D clusters have quasi-2D structure with a fractal dimension very close to that of the ordinary 2D-DLA. This allows one to control morphology of a growing cluster by tuning a single external parameter \alpha.Comment: 6 pages, 6 figures, to appear in Phys. Rev. E (2012

    Parsimonious Kernel Fisher Discrimination

    No full text
    By applying recent results in optimization transfer, a new algorithm for kernel Fisher Discriminant Analysis is provided that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The algorithm is simple, easily programmed and is shown to perform as well as or better than a number of leading machine learning algorithms on a substantial benchmark. It is then applied to a set of extreme small-sample-size problems in virtual screening where it is found to be less accurate than a currently leading approach but is still comparable in a number of cases

    Global Nonradial Instabilities of Dynamically Collapsing Gas Spheres

    Full text link
    Self-similar solutions provide good descriptions for the gravitational collapse of spherical clouds or stars when the gas obeys a polytropic equation of state, p=Kργp=K\rho^\gamma (with γ4/3\gamma\le 4/3). We study the behaviors of nonradial perturbations in the similarity solutions of Larson, Penston and Yahil, which describe the evolution of the collapsing cloud prior to core formation. Our global stability analysis reveals the existence of unstable bar-modes (l=2l=2) when γ1.09\gamma\le 1.09. In particular, for the collapse of isothermal spheres, which applies to the early stages of star formation, the l=2l=2 density perturbation relative to the background, δρ(r,t)/ρ(r,t)\delta\rho({\bf r},t)/\rho(r,t), increases as (t0t)0.352ρc(t)0.176(t_0-t)^{-0.352}\propto \rho_c(t)^{0.176}, where t0t_0 denotes the epoch of core formation, and ρc(t)\rho_c(t) is the cloud central density. Thus, the isothermal cloud tends to evolve into an ellipsoidal shape (prolate bar or oblate disk, depending on initial conditions) as the collapse proceeds. In the context of Type II supernovae, core collapse is described by the γ1.3\gamma\simeq 1.3 equation of state, and our analysis indicates that there is no growing mode (with density perturbation) in the collapsing core before the proto-neutron star forms, although nonradial perturbations can grow during the subsequent accretion of the outer core and envelope onto the neutron star. We also carry out a global stability analysis for the self-similar expansion-wave solution found by Shu, which describes the post-collapse accretion (``inside-out'' collapse) of isothermal gas onto a protostar. We show that this solution is unstable to perturbations of all ll's, although the growth rates are unknown.Comment: 28 pages including 7 ps figures; Minor changes in the discussion; To be published in ApJ (V.540, Sept.10, 2000 issue

    Type I Superconductivity in YbSb2 Single Crystals

    Get PDF
    We present evidence of type I superconductivity in YbSb2 single crystals, from DC and AC magnetization, heat capacity and resistivity measurements. The critical temperature and critical field are determined to be TcT_c\approx 1.3 K and HcH_c\approx 55 Oe. A small Ginzburg-Landau parameter \kappa = 0.05, together with typical magnetization isotherms of type I superconductors, small critical field values, a strong Differential Paramagnetic Effect (DPE) signal, and a field-induced change from second to first order phase transition, confirm the type I nature of the superconductivity in YbSb2. A possible second superconducting state is observed in the radiofrequency (RF) susceptibility measurements, with Tc(2)T_{c}^{(2)}\approx 0.41 K and Hc(2)H_{c}^{(2)}\approx 430 Oe.Comment: 6 pages, 10 figure
    corecore