910 research outputs found
Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors
Using Landau-Ginzburg-Devonshire theory we calculated numerically the static
conductivity of both inclined and counter domain walls in the uniaxial
ferroelectrics-semiconductors of n-type. We used the effective mass
approximation for the electron and holes density of states, which is valid at
arbitrary distance from the domain wall. Due to the electrons accumulation, the
static conductivity drastically increases at the inclined head-to-head wall by
1 order of magnitude for small incline angles theta pi/40 by up 3 orders of
magnitude for the counter domain wall (theta=pi/2). Two separate regions of the
space charge accumulation exist across an inclined tail-to-tail wall: the thin
region in the immediate vicinity of the wall with accumulated mobile holes and
the much wider region with ionized donors. The conductivity across the
tail-to-tail wall is at least an order of magnitude smaller than the one of the
head-to-head wall due to the low mobility of holes, which are improper carries.
The results are in qualitative agreement with recent experimental data for
LiNbO3 doped with MgO.Comment: 20 pages, 6 figures, 1 appendi
The Magnetization of Cu_2(C_5H_{12}N_2)_2Cl_4 : A Heisenberg Spin Ladder System
We study the magnetization of a Heisenberg spin ladder using exact
diagonalization techniques, finding three distinct magnetic phases. We consider
the results in relation to the experimental behaviour of the new copper
compound Cu_2(C_5H_{12}N_2)_2Cl_4 and deduce that the compound is well
described by such a model with a ratio of `chain' to `rung' bond strengths
(J/J^\prime) of the order of 0.2, consistent with results from the magnetic
susceptibility. The effects of temperature, spin impurities and additional
diagonal bonds are presented and we give evidence that these diagonal bonds are
indeed of a ferromagnetic nature.Comment: Latex file (4 pages), related figures (encapsulated postscript)
appende
Phase diagram of an exactly solvable t-J ladder model
We study a system of one-dimensional t-J models coupled to a ladder system. A
special choice of the interaction between neighbouring rungs leads to an
integrable model with supersymmetry, which is broken by the presence of rung
interactions. We analyze the spectrum of low-lying excitations and ground state
phase diagram at zero temperature.Comment: LaTeX, 8 pp. incl. 1 figur
Antiferromagnetic spin ladders: crossover between spin S = 1/2 and S = 1 chains
We study a model of two weakly coupled isotropic spin-1/2 Heisenberg chains
with an antiferromagnetic coupling along the chains. It is shown that the
system always has a spectral gap. For the case of identical chains the model in
the continuous limit is equivalent to 4 decoupled noncritical Ising models. For
this case we obtain the exact expressions for the asymptotics of spin-spin
correlation functions. When the chains have different exchange integrals the
spectrum at low energies is well described by the O(3) nonlinear sigma model.
We discuss the topological order parameter related to the gap formation and
give a detailed description of the dynamical magnetic susceptibility.Comment: 27 pages, latex, no figure
Conductivity of twin walls - surface junctions in ferroelastics: interplay of deformation potential, octahedral rotations, improper ferroelectricity and flexoelectric coupling
Electronic and structural phenomena at the twin domain wall-surface junctions
in the ferroelastic materials are analyzed. Carriers accumulation caused by the
strain-induced band structure changes originated via the deformation potential
mechanism, structural order parameter gradient, rotostriction and flexoelectric
coupling is explored. Approximate analytical results show that inhomogeneous
elastic strains, which exist in the vicinity of the twin walls - surface
junctions due to the rotostriction coupling, decrease the local band gap via
the deformation potential and flexoelectric coupling mechanisms. This is the
direct mechanism of the twin walls static conductivity in ferroelastics and, by
extension, in multiferroics and ferroelectrics. On the other hand,
flexoelectric and rotostriction coupling leads to the appearance of the
improper polarization and electric fields proportional to the structural order
parameter gradient in the vicinity of the twin walls - surface junctions. The
"flexo-roto" fields leading to the carrier accumulation are considered as
indirect mechanism of the twin walls conductivity. Comparison of the direct and
indirect mechanisms illustrates complex range of phenomena directly responsible
for domain walls static conductivity in materials with multiple order
parameters.Comment: 35 pages, 11 figures, 3 table, 3 appendices Improved set of
rotostriction coefficients are used in calculation
Anisotropic spin freezing in the S=1/2 zigzag ladder compound SrCuO2
Using magnetic neutron scattering we characterize an unusual low temperature
phase in orthorhombic SrCuO2. The material contains zigzag spin ladders formed
by pairs of S=1/2 chains (J=180 meV) coupled through a weak frustrated
interaction |J'|<0.1J. At T<Tc1=5.0(4)K an elastic peak develops in a gapless
magnetic excitation spectrum indicating spin freezing on a time scale larger
than 200 picoseconds. While the frozen state has long range commensurate
antiferromagnetic order along the chains with the correlation length exceeding
200 lattice periods along the c-axis and a substantial correlation length of
60(25) spacings along the a-axis perpendicular to the zigzag plane, only 2
lattice units are correlated along the b-axis which is the direction of the
frustrated interactions. The frozen magnetic moment of each Cu ion is very
small, 0.033(7) Bohr magneton even at T=0.35K, and has unusual temperature
dependence with a cusp at Tc2=1.5K reminiscent of a phase transition. We argue
that slow dynamics of stripe-like cooperative magnetic defects in tetragonal
a-c planes yield this anisotropic frozen state.Comment: 4 pages, LaTeX, submitted to PR
Excitation spectrum of the S=1/2 quantum spin ladder with frustration: elementary quasiparticles and many-particle bound states
We study the excitation spectrum of the two-chain S=1/2 Heisenberg spin
ladder with additional inter-chain second-neighbor frustrating interactions.
The one and two-particle excitations are analyzed by using a mapping of the
model onto a Bose gas of hard-core triplets. We find that low-lying singlet and
triplet two-particle bound states are present and their binding energy
increases with increasing frustration. In addition, many-particle bound states
are found by a combination of variational and exact diagonalization techniques.
We prove that the larger the number of bound quasiparticles the larger the
binding energy. Thus the excitation spectrum has a complex structure and
consists of elementary triplets and collective many-particle singlet and
triplet excitations which generally mix with the elementary ones.
The model exhibits a quantum phase transition from an antiferromagnetic
ladder phase (small frustration) into Haldane phase (effectively ferromagnetic
ladder for large frustration). We argue that near the transition point the
spectrum in both triplet and singlet channels becomes gapless. The excitation
wave function is dominated by large-size bound states which leads to the
vanishing of the quasiparticle residue.Comment: RevTeX, 23 pages, 12 figure
Magnetism of a tetrahedral cluster spin-chain
We discuss the magnetic properties of a dimerized and completely frustrated
tetrahedral spin-1/2 chain. Using a combination of exact diagonalization and
bond-operator theory the quantum phase diagram is shown to incorporate a
singlet-product, a dimer, and a Haldane phase. In addition we consider one-,
and two-triplet excitations in the dimer phase and evaluate the magnetic Raman
cross section which is found to be strongly renormalized by the presence of a
two-triplet bound state. The link to a novel tellurate materials is clarified.Comment: 8 pages, 8 figure
Electronic Structure of Ladder Cuprates
We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41
and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the
Fermi energy. The hopping parameters estimated by fitting LDA energy bands show
a strong anisotropy between the t_perp t_par intra-ladder hopping and small
inter-ladder hopping. A downfolding method shows that this anisotropy arises
from the ladder structure.The conductivity perpendicular to the ladders is
computed assuming incoherent tunneling giving a value close to experiment.Comment: 5 pages, 3 figure
Excitation spectrum and ground state properties of the S=1/2 Heisenberg ladder with staggered dimerization
We have studied the excitation spectrum of the quantum spin ladder
with staggered dimerization by dimer series expansions, diagrammatic analysis
of an effective interacting Bose gas of local triplets, and exact
diagonalization of small clusters. We find that the model has two massive
phases, with predominant inter-chain (rung) or intra-chain correlations. The
transition from the rung dimer into the intra-chain dimer phase is
characterized by softening of the triplet spectrum at . The excitation
spectrum as well as the spin correlations away from and close to the critical
line are calculated. The location of the phase boundary is also determined.Comment: 13 pages, 7 figure
- …
