373,982 research outputs found
The gravitational field of a global monopole
We present an exact solution to the non-linear equation which describes a
global monopole in the flat space. We re-examine the metric and the geodesics
outside the global monopole. We will see that a global monopole produces a
repulsive gravitational field outside the core in addition to a solid angular
deficit. The lensing property of the global monopole and the global
monopole-antimonopole annihilation mechanism are studied.Comment: 8 pages, no figure
Measurement of high-order polarization mode dispersion
We demonstrate a new method to measure high-order polarization mode dispersion (PMD) using the Jones matrix exponential expansion. High-order PMD is characterized by measuring a series of characteristic matrices, which are convenient quantities for analyzing PMD effects in the time-domain. An experimental method is developed to estimate the validity range of the exponential expansion
Disaggregating non-volatile memory for throughput-oriented genomics workloads
Massive exploitation of next-generation sequencing technologies requires dealing with both: huge amounts of data and complex bioinformatics pipelines. Computing architectures have evolved to deal with these problems, enabling approaches that were unfeasible years ago: accelerators and Non-Volatile Memories (NVM) are becoming widely used to enhance the most demanding workloads. However, bioinformatics workloads are usually part of bigger pipelines with different and dynamic needs in terms of resources. The introduction of Software Defined Infrastructures (SDI) for data centers provides roots to dramatically increase the efficiency in the management of infrastructures. SDI enables new ways to structure hardware resources through disaggregation, and provides new hardware composability and sharing mechanisms to deploy workloads in more flexible ways. In this paper we study a state-of-the-art genomics application, SMUFIN, aiming to address the challenges of future HPC facilities.This work is partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitivity (TIN2015-65316-P) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft
Mate Preferences in the US and Singapore: A Cross-cultural Test of the Mate Preference Priority Model
Excitation function of nucleon and pion elliptic flow in relativistic heavy-ion collisions
Within a relativistic transport (ART) model for heavy-ion collisions, we show
that the recently observed characteristic change from out-of-plane to in-plane
elliptic flow of protons in mid-central Au+Au collisions as the incident energy
increases is consistent with the calculated results using a stiff nuclear
equation of state (K=380 MeV). We have also studied the elliptic flow of pions
and the transverse momentum dependence of both the nucleon and pion elliptic
flow in order to gain further insight about the collision dynamics.Comment: 8 pages, 2 figure
Clustered Error Correction of Codeword-Stabilized Quantum Codes
Codeword stabilized (CWS) codes are a general class of quantum codes that
includes stabilizer codes and many families of non-additive codes with good
parameters. For such a non-additive code correcting all t-qubit errors, we
propose an algorithm that employs a single measurement to test all errors
located on a given set of t qubits. Compared with exhaustive error screening,
this reduces the total number of measurements required for error recovery by a
factor of about 3^t.Comment: 4 pages, 2 figures, revtex4; number of editorial changes in v
Nearly chirp- and pedestal-free pulse compression in nonlinear fiber Bragg gratings
Peer reviewedPublisher PD
Application of A Distributed Nucleus Approximation In Grid Based Minimization of the Kohn-Sham Energy Functional
In the distributed nucleus approximation we represent the singular nucleus as
smeared over a smallportion of a Cartesian grid. Delocalizing the nucleus
allows us to solve the Poisson equation for theoverall electrostatic potential
using a linear scaling multigrid algorithm.This work is done in the context of
minimizing the Kohn-Sham energy functionaldirectly in real space with a
multiscale approach. The efficacy of the approximation is illustrated
bylocating the ground state density of simple one electron atoms and
moleculesand more complicated multiorbital systems.Comment: Submitted to JCP (July 1, 1995 Issue), latex, 27pages, 2figure
Cosmic Shear from Galaxy Spins
We discuss the origin of galactic angular momentum, and the statistics of the
present day spin distribution. It is expected that the galaxy spin axes are
correlated with the intermediate principal axis of the gravitational shear
tensor. This allows one to reconstruct the shear field and thereby the full
gravitational potential from the observed galaxy spin fields. We use the
direction of the angular momentum vector without any information of its
magnitude, which requires a measurement of the position angle and inclination
on the sky of each disk galaxy. We present the maximum likelihood shear
inversion procedure, which involves a constrained linear minimization. The
theory is tested against numerical simulations. We find the correlation
strength of nonlinear structures with the initial shear field, and show that
accurate large scale density reconstructions are possible at the expected noise
level.Comment: Accepted by the ApJL, revised discussion, minor changes, LaTex file,
8 pages, 1 ps figur
- …
