16,907 research outputs found

    Structure-Aware Dynamic Scheduler for Parallel Machine Learning

    Full text link
    Training large machine learning (ML) models with many variables or parameters can take a long time if one employs sequential procedures even with stochastic updates. A natural solution is to turn to distributed computing on a cluster; however, naive, unstructured parallelization of ML algorithms does not usually lead to a proportional speedup and can even result in divergence, because dependencies between model elements can attenuate the computational gains from parallelization and compromise correctness of inference. Recent efforts toward this issue have benefited from exploiting the static, a priori block structures residing in ML algorithms. In this paper, we take this path further by exploring the dynamic block structures and workloads therein present during ML program execution, which offers new opportunities for improving convergence, correctness, and load balancing in distributed ML. We propose and showcase a general-purpose scheduler, STRADS, for coordinating distributed updates in ML algorithms, which harnesses the aforementioned opportunities in a systematic way. We provide theoretical guarantees for our scheduler, and demonstrate its efficacy versus static block structures on Lasso and Matrix Factorization

    Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality: the QCD Coupling Constant at Four Loops

    Full text link
    A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The extended renormalization group equations, which express the invariance of physical observables under both the renormalization scale- and scheme-parameter transformations, provide a convenient way for estimating the scale- and scheme-dependence of the physical process. In this paper, we present a solution for the scale-equation of the extended renormalization group equations at the four-loop level. Using the principle of maximum conformality (PMC) / Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all non-conformal {βi}\{\beta_i\} terms in the perturbative expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are independent of the renormalization scheme. Different schemes lead to different effective PMC/BLM scales, but the final results are scheme independent. Conversely, from the requirement of scheme independence, one not only can obtain scheme-independent commensurate scale relations among different observables, but also determine the scale displacements among the PMC/BLM scales which are derived under different schemes. In principle, the PMC/BLM scales can be fixed order-by-order, and as a useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales up to NNLO. An explicit application for determining the scale setting of Re+e(Q)R_{e^{+}e^-}(Q) up to four loops is presented. By using the world average αsMSˉ(MZ)=0.1184±0.0007\alpha^{\bar{MS}}_s(M_Z) =0.1184 \pm 0.0007, we obtain the asymptotic scale for the 't Hooft associated with the MSˉ\bar{MS} scheme, ΛMSˉtH=24510+9\Lambda^{'tH}_{\bar{MS}}= 245^{+9}_{-10} MeV, and the asymptotic scale for the conventional MSˉ\bar{MS} scheme, ΛMSˉ=2138+19\Lambda_{\bar{MS}}= 213^{+19}_{-8} MeV.Comment: 9 pages, no figures. The formulas in the Appendix are correcte

    The Decay Properties of the 1^{-+} Hybrid State

    Full text link
    Within the framework of the QCD sum rules, we consider the three-point correlation function, work at the limit q^2 -> 0 and m_\pi -> 0, and pick out the singular term ~ {1\over q^2} to extract the pionic coupling constants of the 1^{-+} hybrid meson. Then we calculate the decay widths of different modes. The decay width of the S-wave modes b_1 \pi, f_1\pi increases quickly as the hybrid meson mass and decay momentum increase. But for the low mass hybrid meson around 1.6 GeV, the P-wave decay mode \rho \pi is very important and its width is around 180 MeV, while the widths of \eta \pi and \eta^\prime \pi are strongly suppressed. We suggest the experimental search of \pi_1(1600) through the decay chains at BESIII: e^+e^- -> J/\psi(\psi') -> \pi_1 +\gamma or e^+e^- -> J/\psi(\psi') -> \pi_1 +\rho where the \pi_1 state can be reconstructed through the decay modes \pi_1 -> \rho\pi -> \pi^+\pi^-\pi^0 or \pi_1 -> f_1(1285)\pi^0. It is also interesting to look for \pi_1 using the available BELLE/BABAR data through the process e^+e^- -> \gamma^\ast -> \rho\pi_1, b_1\pi_1, \gamma \pi_1 etc.Comment: one reference correcte

    More Straightforward Extraction of the Fundamental Lepton Mixing Parameters from Long-Baseline Neutrino Oscillations

    Get PDF
    We point out the simple reversibility between the fundamental neutrino mixing parameters in vacuum and their effective counterparts in matter. The former can therefore be expressed in terms of the latter, allowing more straightforward extraction of the genuine lepton mixing quantities from a variety of long-baseline neutrino oscillation experiments. In addition to the parametrization-independent results, we present the formulas based on the standard parametrization of the lepton flavor mixing matrix and give a typical numerical illustration.Comment: RevTex 10 pages. Minor changes. Phys. Rev. D in printin

    Diffusion of Lexical Change in Social Media

    Full text link
    Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity -- especially with regard to race -- plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified "netspeak" dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English.Comment: preprint of PLOS-ONE paper from November 2014; PLoS ONE 9(11) e11311

    Response time of a normal-superconductor hybrid system under the step-like pulse bias

    Get PDF
    The response of a quantum dot coupled with one normal lead and a superconductor lead driven by a step-like pulse bias VLV_L is studied using the non-equilibrium Green function method. In the linear pulse bias regime, the responses of the upwards and downwards bias are symmetric. In this regime the turn-on time and turn-off time are much slower than that of the normal system due to the Andreev reflection. On the other hand, for the large pulse bias VLV_L, the instantaneous current exhibits oscillatory behaviors with the frequency Ω=qVL\hbar\Omega =qV_L. The turn on/off times are in (or shorter than) the scale of 1/VL1/V_L, so they are faster for the larger bias VLV_L. In addition, the responses for the upwards and downwards bias are asymmetric at large VLV_L. The turn-on time is larger than the turn-off time but the relaxation time \cite{note1} depends only on the coupling strength Γ\Gamma and it is much smaller than the turn-on/off times for the large bias VLV_L.Comment: 8 pages, 4 figures, accepted for publication in Phys. Rev.

    An Implication on the Pion Distribution Amplitude from the Pion-Photon Transition Form Factor with the New BABAR Data

    Full text link
    The new BABAR data on the pion-photon transition form factor arouses people's new interests on the determination of pion distribution amplitude. To explain the data, we take both the leading valence quark state's and the non-valence quark states' contributions into consideration, where the valence quark part up to next-to-leading order is presented and the non-valence quark part is estimated by a phenomenological model based on its limiting behavior at both Q20Q^2\to 0 and Q2Q^2\to\infty. Our results show that to be consistent with the new BABAR data at large Q2Q^2 region, a broader other than the asymptotic-like pion distribution amplitude should be adopted. The broadness of the pion distribution amplitude is controlled by a parameter BB. It has been found that the new BABAR data at low and high energy regions can be explained simultaneously by setting BB to be around 0.60, in which the pion distribution amplitude is closed to the Chernyak-Zhitnitsky form.Comment: 19 pages, 6 figures, 2 tables. Slightly changed, references updated. To be published in Phys.Rev.
    corecore