117,337 research outputs found

    Momentum, Disposition, and tax-loss selling: the UK evidence

    Get PDF
    In this paper we explore the seasonality of UK momentum returns. We find evidence of very high momentum returns during March followed by negative returns during April. This seasonality is driven by substantial swings in performance for the Loser portfolio, with loser stocks performing very poorly during March before bouncing back in April. This pattern is what we would expect to result from tax-loss selling by individual investors and as such supports the Grinblatt and Han’s (2004) explanation for momentum that is based on disposition trading. Poor January momentum returns are not so easily explained

    A Novel Large Moment Antiferromagnetic Order in K0.8Fe1.6Se2 Superconductor

    Full text link
    The discovery of cuprate high Tc superconductors has inspired searching for unconventional su- perconductors in magnetic materials. A successful recipe has been to suppress long-range order in a magnetic parent compound by doping or high pressure to drive the material towards a quantum critical point, which is replicated in recent discovery of iron-based high TC superconductors. The long-range magnetic order coexisting with superconductivity has either a small magnetic moment or low ordering temperature in all previously established examples. Here we report an exception to this rule in the recently discovered potassium iron selenide. The superconducting composition is identified as the iron vacancy ordered K0.8Fe1.6Se2 with Tc above 30 K. A novel large moment 3.31 {\mu}B/Fe antiferromagnetic order which conforms to the tetragonal crystal symmetry has the unprecedentedly high an ordering temperature TN = 559 K for a bulk superconductor. Staggeredly polarized electronic density of states thus is suspected, which would stimulate further investigation into superconductivity in a strong spin-exchange field under new circumstance.Comment: 5 figures, 5 pages, and 2 tables in pdf which arXiv.com cannot tak

    Pseudoparticle-operator description of an interacting Bose gas

    Full text link
    We write the Hamiltonian of the Bose gas with two-body repulsive δ\delta-function potential in a pseudoparticle operator basis which diagonalizes the problem via the Bethe ansatz. In this operator basis the original bosonic interactions are represented by zero-momentum forward-scattering interactions between Landau-liquid pseudoparticles. We find that this pseudoparticle operator algebra is complete: {\it all} the Hamiltonian eigenstates are generated by acting pseudoparticle operators on the system vacuum. It is shown that one boson of vanishing momentum and energy is a composite of a one-pseudoparticle excitation and a collective pseudoparticle excitation. These excitations have finite opposite momenta and cannot be decomposed. Our formalism enables us to calculate the various quantities which characterize the static and dynamic behavior of the system at low energies.Comment: 37 pages, 6 figures (they can be obtained by ordinary mail), RevTeX 3.0, preprint UIU

    Breaking an image encryption algorithm based on chaos

    Full text link
    Recently, a chaos-based image encryption algorithm called MCKBA (Modified Chaotic-Key Based Algorithm) was proposed. This paper analyzes the security of MCKBA and finds that it can be broken with a differential attack, which requires only four chosen plain-images. Performance of the attack is verified by experimental results. In addition, some defects of MCKBA, including insensitivity with respect to changes of plain-image/secret key, are reported.Comment: 10 pages, 4 figure

    Non-Markovian quantum state diffusion for an open quantum system in fermionic environments

    Full text link
    Non-Markovian quantum state diffusion (NMQSD) provides a powerful approach to the dynamics of an open quantum system in bosonic environments. Here we develop an NMQSD method to study the open quantum system in fermionic environments. This problem involves anticommutative noise functions (i.e., Grassmann variables) that are intrinsically different from the noise functions of bosonic baths. We obtain the NMQSD equation for quantum states of the system and the non-Markovian master equation. Moreover, we apply this NMQSD method to single and double quantum-dot systems.Comment: 9 pages, 1 figur
    corecore