2,988 research outputs found

    Maximal subgroups and PST-groups

    Get PDF
    A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19-25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versiosn of Kaplan's results, which enables a better understanding of the relationships between these classes

    Effect of partial ionization on wave propagation in solar magnetic flux tubes

    Full text link
    Observations show that waves are ubiquitous in the solar atmosphere and may play an important role for plasma heating. The study of waves in the solar corona is usually based on linear ideal magnetohydrodynamics (MHD) for a fully ionized plasma. However, the plasma in the photosphere and the chromosphere is only partially ionized. Here we investigate theoretically the impact of partial ionization on MHD wave propagation in cylindrical flux tubes in the two-fluid model. We derive the general dispersion relation that takes into account the effects of neutral-ion collisions and the neutral gas pressure. We take the neutral-ion collision frequency as an arbitrary parameter. Particular results for transverse kink modes and slow magnetoacoustic modes are shown. We find that the wave frequencies only depend on the properties of the ionized fluid when the neutral-ion collision frequency is much lower that the wave frequency. For high collision frequencies realistic of the solar atmosphere ions and neutrals behave as a single fluid with an effective density corresponding to the sum of densities of both fluids and an effective sound velocity computed as the average of the sound velocities of ions and neutrals. The MHD wave frequencies are modified accordingly. The neutral gas pressure can be neglected when studying transverse kink waves but it has to be taken into account for a consistent description of slow magnetoacoustic waves. The MHD waves are damped due to neutral-ion collisions. The damping is most efficient when the wave frequency and the collision frequency are of the same order of magnitude. For high collision frequencies slow magnetoacoustic waves are more efficiently damped than transverse kink waves. In addition, we find the presence of cut-offs for certain combinations of parameters that cause the waves to become non-propagating.Comment: Accepted for publication in A&

    Measuring the purity of a qubit state: entanglement estimation with fully separable measurements

    Get PDF
    Given a finite number NN of copies of a qubit state we compute the maximum fidelity that can be attained using joint-measurement protocols for estimating its purity. We prove that in the asymptotic NN\to\infty limit, separable-measurement protocols can be as efficient as the optimal joint-measurement one if classical communication is used. This in turn shows that the optimal estimation of the entanglement of a two-qubit state can also be achieved asymptotically with fully separable measurements. The relationship between our global Bayesian approach and the quantum Cramer-Rao bound is also discussed.Comment: 5 pages, 1 figure, RevTeX, improved versio

    Optimal full estimation of qubit mixed states

    Get PDF
    We obtain the optimal scheme for estimating unknown qubit mixed states when an arbitrary number N of identically prepared copies is available. We discuss the case of states in the whole Bloch sphere as well as the restricted situation where these states are known to lie on the equatorial plane. For the former case we obtain that the optimal measurement does not depend on the prior probability distribution provided it is isotropic. Although the equatorial-plane case does not have this property for arbitrary N, we give a prior-independent scheme which becomes optimal in the asymptotic limit of large N. We compute the maximum mean fidelity in this asymptotic regime for the two cases. We show that within the pointwise estimation approach these limits can be obtained in a rather easy and rapid way. This derivation is based on heuristic arguments that are made rigorous by using van Trees inequalities. The interrelation between the estimation of the purity and the direction of the state is also discussed. In the general case we show that they correspond to independent estimations whereas for the equatorial-plane states this is only true asymptotically.Comment: 19 pages, no figure

    Exoplanet HD 209458b : Evaporation strengthened

    Full text link
    Following re-analysis of Hubble Space Telescope observations of primary transits of the extrasolar planet HD209458b at Lyman-alpha, Ben-Jaffel (2007, BJ007) claims that no sign of evaporation is observed. Here we show that, in fact, this new analysis is consistent with the one of Vidal-Madjar et al. (2003, VM003) and supports the detection of evaporation. The apparent disagreement is mainly due to the disparate wavelength ranges that are used to derive the transit absorption depth. VM003 derives a (15+/-4)% absorption depth during transit over the core of the stellar Lyman-alpha line (from -130 km/s to +100 km/s), and this result agrees with the (8.9+/-2.1)% absorption depth reported by BJ007 from a slightly expanded dataset but over a larger wavelength range (+/-200 km/s). These measurements agree also with the (5+/-2)% absorption reported by Vidal-Madjar et al. (2004) over the whole Lyman-alpha line from independent, lower-resolution data. We show that stellar Lyman-alpha variability is unlikely to significantly affect those detections. The HI atoms must necessarily have velocities above the escape velocities and/or be outside the Roche lobe, given the lobe shape and orientation. Absorption by HI in HD209458b's atmosphere has thus been detected with different datasets, and now with independent analyses. All these results strengthen the concept of evaporating hot-Jupiters, as well as the modelization of this phenomenon.Comment: To be published in ApJ

    Long-term variation in the Sun's activity caused by magnetic Rossby waves in the tachocline

    Full text link
    Long-term records of sunspot number and concentrations of cosmogenic radionuclides (10Be and 14C) on the Earth reveal the variation of the Sun's magnetic activity over hundreds and thousands of years. We identify several clear periods in sunspot, 10Be, and 14C data as 1000, 500, 350, 200 and 100 years. We found that the periods of the first five spherical harmonics of the slow magnetic Rossby mode in the presence of a steady toroidal magnetic field of 1200-1300 G in the lower tachocline are in perfect agreement with the time scales of observed variations. The steady toroidal magnetic field can be generated in the lower tachocline either due to the steady dynamo magnetic field for low magnetic diffusivity or due to the action of the latitudinal differential rotation on the weak poloidal primordial magnetic field, which penetrates from the radiative interior. The slow magnetic Rossby waves lead to variations of the steady toroidal magnetic field in the lower tachocline, which modulate the dynamo magnetic field and consequently the solar cycle strength. This result constitutes a key point for long-term prediction of the cycle strength. According to our model, the next deep minimum in solar activity is expected during the first half of this century.Comment: 4 pages, 4 figures, accepted in ApJ

    Separable Measurement Estimation of Density Matrices and its Fidelity Gap with Collective Protocols

    Get PDF
    We show that there exists a gap between the performance of separable and collective measurements in qubit mixed-state estimation that persists in the large sample limit. We characterize such gap in terms of the corresponding bounds on the mean fidelity. We present an adaptive protocol that attains the separable-measurement bound. This (optimal separable) protocol uses von Neumann measurements and can be easily implemented with current technology.Comment: version published in PR
    corecore