157 research outputs found
Study of the spring and autumn daemon-flux maxima at the Baksan Neutrino Observatory
Detection of daemons in low-background conditions in September 2005 and March
2006 has provided evidence for the expected to occur at that times maxima in
the flux of daemons with V ~ 10-15 km s-1, which hit the Earth from near-Earth,
almost circular heliocentric orbits. The ability of some FEU-167-1 PM tubes
with a thicker inner Al coating to detect directly daemon passage through them
has also been demonstrated, an effect increasing ~100-fold the detector
efficiency. As a result, the daemon flux recorded at the maxima was increased
from ~10-9 to ~10-7 cm-2 s-1. The intensity and direction of the flux during
maxima depend on the time of day and latitude of observations (therefore,
synchronous measurements in the Northern and Southern Earth's hemispheres are
desirable). All the experimental results obtained either support the
conclusions following from the daemon paradigm or find a simple interpretation
within it.Comment: 15 pages, including 8 figures and 3 table
Theory of Spike Spiral Waves in a Reaction-Diffusion System
We discovered a new type of spiral wave solutions in reaction-diffusion
systems --- spike spiral wave, which significantly differs from spiral waves
observed in FitzHugh-Nagumo-type models. We present an asymptotic theory of
these waves in Gray-Scott model. We derive the kinematic relations describing
the shape of this spiral and find the dependence of its main parameters on the
control parameters. The theory does not rely on the specific features of
Gray-Scott model and thus is expected to be applicable to a broad range of
reaction-diffusion systems.Comment: 4 pages (REVTeX), 2 figures (postscript), submitted to Phys. Rev.
Let
SphinX soft X-ray spectrophotometer: Science objectives, design and performance
The goals and construction details of a new design Polish-led X-ray spectrophotometer are described. The instrument is aimed to observe emission from entire solar corona and is placed as a separate block within the Russian TESIS X- and EUV complex aboard the CORONAS-PHOTON solar orbiting observatory. SphinX uses silicon PIN diode detectors for high time resolution measurements of the solar spectra in the range 0.8–15 keV. Its spectral resolution allows for discerning more than hundred separate energy bands in this range. The instrument dynamic range extends two orders of magnitude below and above these representative for GOES. The relative and absolute accuracy of spectral measurements is expected to be better than few percent, as follows from extensive ground laboratory calibrations
SphinX: The Solar Photometer in X-Rays
Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈ 1 - 15 keV with resolution ≈ 0.4 keV. SphinX was flown on the Russian CORONAS-PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed
Scroll waves in isotropic excitable media : linear instabilities, bifurcations and restabilized states
Scroll waves are three-dimensional analogs of spiral waves. The linear
stability spectrum of untwisted and twisted scroll waves is computed for a
two-variable reaction-diffusion model of an excitable medium. Different bands
of modes are seen to be unstable in different regions of parameter space. The
corresponding bifurcations and bifurcated states are characterized by
performing direct numerical simulations. In addition, computations of the
adjoint linear stability operator eigenmodes are also performed and serve to
obtain a number of matrix elements characterizing the long-wavelength
deformations of scroll waves.Comment: 30 pages 16 figures, submitted to Phys. Rev.
Theory of spiral wave dynamics in weakly excitable media: asymptotic reduction to a kinematic model and applications
In a weakly excitable medium, characterized by a large threshold stimulus,
the free end of an isolated broken plane wave (wave tip) can either rotate
(steadily or unsteadily) around a large excitable core, thereby producing a
spiral pattern, or retract causing the wave to vanish at boundaries. An
asymptotic analysis of spiral motion and retraction is carried out in this
weakly excitable large core regime starting from the free-boundary limit of the
reaction-diffusion models, valid when the excited region is delimited by a thin
interface. The wave description is shown to naturally split between the tip
region and a far region that are smoothly matched on an intermediate scale.
This separation allows us to rigorously derive an equation of motion for the
wave tip, with the large scale motion of the spiral wavefront slaved to the
tip. This kinematic description provides both a physical picture and exact
predictions for a wide range of wave behavior, including: (i) steady rotation
(frequency and core radius), (ii) exact treatment of the meandering instability
in the free-boundary limit with the prediction that the frequency of unstable
motion is half the primary steady frequency (iii) drift under external actions
(external field with application to axisymmetric scroll ring motion in
three-dimensions, and spatial or/and time-dependent variation of excitability),
and (iv) the dynamics of multi-armed spiral waves with the new prediction that
steadily rotating waves with two or more arms are linearly unstable. Numerical
simulations of FitzHug-Nagumo kinetics are used to test several aspects of our
results. In addition, we discuss the semi-quantitative extension of this theory
to finite cores and pinpoint mathematical subtleties related to the thin
interface limit of singly diffusive reaction-diffusion models
Evolution of spiral and scroll waves of excitation in a mathematical model of ischaemic border zone
Abnormal electrical activity from the boundaries of ischemic cardiac tissue
is recognized as one of the major causes in generation of ischemia-reperfusion
arrhythmias. Here we present theoretical analysis of the waves of electrical
activity that can rise on the boundary of cardiac cell network upon its
recovery from ischaemia-like conditions. The main factors included in our
analysis are macroscopic gradients of the cell-to-cell coupling and cell
excitability and microscopic heterogeneity of individual cells. The interplay
between these factors allows one to explain how spirals form, drift together
with the moving boundary, get transiently pinned to local inhomogeneities, and
finally penetrate into the bulk of the well-coupled tissue where they reach
macroscopic scale. The asymptotic theory of the drift of spiral and scroll
waves based on response functions provides explanation of the drifts involved
in this mechanism, with the exception of effects due to the discreteness of
cardiac tissue. In particular, this asymptotic theory allows an extrapolation
of 2D events into 3D, which has shown that cells within the border zone can
give rise to 3D analogues of spirals, the scroll waves. When and if such scroll
waves escape into a better coupled tissue, they are likely to collapse due to
the positive filament tension. However, our simulations have shown that such
collapse of newly generated scrolls is not inevitable and that under certain
conditions filament tension becomes negative, leading to scroll filaments to
expand and multiply leading to a fibrillation-like state within small areas of
cardiac tissue.Comment: 26 pages, 13 figures, appendix and 2 movies, as accepted to PLoS ONE
2011/08/0
Kinematic reduction of reaction-diffusion fronts with multiplicative noise: Derivation of stochastic sharp-interface equations
We study the dynamics of generic reaction-diffusion fronts, including pulses
and chemical waves, in the presence of multiplicative noise. We discuss the
connection between the reaction-diffusion Langevin-like field equations and the
kinematic (eikonal) description in terms of a stochastic moving-boundary or
sharp-interface approximation. We find that the effective noise is additive and
we relate its strength to the noise parameters in the original field equations,
to first order in noise strength, but including a partial resummation to all
orders which captures the singular dependence on the microscopic cutoff
associated to the spatial correlation of the noise. This dependence is
essential for a quantitative and qualitative understanding of fluctuating
fronts, affecting both scaling properties and nonuniversal quantities. Our
results predict phenomena such as the shift of the transition point between the
pushed and pulled regimes of front propagation, in terms of the noise
parameters, and the corresponding transition to a non-KPZ universality class.
We assess the quantitative validity of the results in several examples
including equilibrium fluctuations, kinetic roughening, and the noise-induced
pushed-pulled transition, which is predicted and observed for the first time.
The analytical predictions are successfully tested against rigorous results and
show excellent agreement with numerical simulations of reaction-diffusion field
equations with multiplicative noise.Comment: 17 pages, 6 figure
Bioinformatic identification of novel putative photoreceptor specific cis-elements
<p>Abstract</p> <p>Background</p> <p>Cell specific gene expression is largely regulated by different combinations of transcription factors that bind <it>cis</it>-elements in the upstream promoter sequence. However, experimental detection of <it>cis</it>-elements is difficult, expensive, and time-consuming. This provides a motivation for developing bioinformatic methods to identify <it>cis</it>-elements that could prioritize future experimental studies. Here, we use motif discovery algorithms to predict transcription factor binding sites involved in regulating the differences between murine rod and cone photoreceptor populations.</p> <p>Results</p> <p>To identify highly conserved motifs enriched in promoters that drive expression in either rod or cone photoreceptors, we assembled a set of murine rod-specific, cone-specific, and non-photoreceptor background promoter sequences. These sets were used as input to a newly devised motif discovery algorithm called Iterative Alignment/Modular Motif Selection (IAMMS). Using IAMMS, we predicted 34 motifs that may contribute to rod-specific (19 motifs) or cone-specific (15 motifs) expression patterns. Of these, 16 rod- and 12 cone-specific motifs were found in clusters near the transcription start site. New findings include the observation that cone promoters tend to contain TATA boxes, while rod promoters tend to be TATA-less (exempting <it>Rho </it>and <it>Cnga1</it>). Additionally, we identify putative sites for IL-6 effectors (in rods) and RXR family members (in cones) that can explain experimental data showing changes to cell-fate by activating these signaling pathways during rod/cone development. Two of the predicted motifs (NRE and ROP2) have been confirmed experimentally to be involved in cell-specific expression patterns. We provide a full database of predictions as additional data that may contain further valuable information. IAMMS predictions are compared with existing motif discovery algorithms, DME and BioProspector. We find that over 60% of IAMMS predictions are confirmed by at least one other motif discovery algorithm.</p> <p>Conclusion</p> <p>We predict novel, putative <it>cis-</it>elements enriched in the promoter of rod-specific or cone-specific genes. These are candidate binding sites for transcription factors involved in maintaining functional differences between rod and cone photoreceptor populations.</p
- …
