8,774 research outputs found
High-throughput in-situ characterization and modelling of precipitation kinetics in compositionally graded alloys
The development of new engineering alloy chemistries is a time consuming and
iterative process. A necessary step is characterization of the
nano/microstructure to provide a link between the processing and properties of
each alloy chemistry considered. One approach to accelerate the identification
of optimal chemistries is to use samples containing a gradient in composition,
ie. combinatorial samples, and to investigate many different chemistries at the
same time. However, for engineering alloys, the final properties depend not
only on chemistry but also on the path of microstructure development which
necessitates characterization of microstructure evolution for each chemistry.
In this contribution we demonstrate an approach that allows for the in-situ,
nanoscale characterization of the precipitate structures in alloys, as a
function of aging time, in combinatorial samples containing a composition
gradient. The approach uses small angle x-ray scattering (SAXS) at a
synchrotron beamline. The Cu-Co system is used for the proof-of-concept and the
combinatorial samples prepared contain a gradient in Co from 0% to 2%. These
samples are aged at temperatures between 450{\textdegree}C and
550{\textdegree}C and the precipitate structures (precipitate size, volume
fraction and number density) all along the composition gradient are
simultaneously monitored as a function of time. This large dataset is used to
test the applicability and robustness of a conventional class model for
precipitation that considers concurrent nucleation, growth and coarsening and
the ability of the model to describe such a large dataset.Comment: Published in Acta Materiali
Implications of CP violating 2HDM in B physics
The charged fermion mass matrices are invariant under symmetry
linked to the fermion number transformation. Under the condition that the
definition of this symmetry in arbitrary weak basis does not depend upon Higgs
parameters such as ratio of vacuum expectation values, a class of two Higgs
doublet models (2HDM) can be identified in which tree level flavor changing
neutral currents normally present in 2HDM are absent. However unlike the type I
or type II Higgs doublet models, the charged Higgs couplings in these models
contain additional flavor dependent CP violating phases. These phases can
account for the recent hints of the beyond standard model CP violation in the
and mixing. In particular, there is a range of parameters in which
new phases do not contribute to the meson CP violation but give identical
new physics phases in the and meson mixing.Comment: 7 pages, 1 figure, Talk given by Bhavik P. Kodrani at 16th
International Symposium on Particles, Strings and Cosmology, July 19th -
23rd, 2010, Valencia, Spai
Attitude Determination from Single-Antenna Carrier-Phase Measurements
A model of carrier phase measurement (as carried out by a satellite
navigation receiver) is formulated based on electromagnetic theory. The model
shows that the phase of the open-circuit voltage induced in the receiver
antenna with respect to a local oscillator (in the receiver) depends on the
relative orientation of the receiving and transmitting antennas. The model
shows that using a {\it single} receiving antenna, and making carrier phase
measurements to seven satellites, the 3-axis attitude of a user platform (in
addition to its position and time) can be computed relative to an initial
point. This measurement model can also be used to create high-fidelity
satellite signal simulators that take into account the effect of platform
rotation as well as translation.Comment: 12 pages, and one figure. Published in J. Appl. Phys. vol. 91, No. 7,
April 1, 200
Density hardening plasticity and mechanical aging of silica glass under pressure: A Raman spectroscopic study
In addition of a flow, plastic deformation of structural glasses (in
particular amorphous silica) is characterized by a permanent densification.
Raman spectroscopic estimators are shown to give a full account of the plastic
behavior of silica under pressure. While the permanent densification of silica
has been widely discussed in terms of amorphous-amorphous transition, from a
plasticity point of view, the evolution of the residual densification with the
maximum pressure of a pressure cycle can be discussed as a density hardening
phenomenon. In the framework of such a mechanical aging effect, we propose that
the glass structure could be labelled by the maximum pressure experienced by
the glass and that the saturation of densification could be associated with the
densest packing of tetrahedra only linked by their vertices
Velocity Amplitudes in Global Convection Simulations: The Role of the Prandtl Number and Near-Surface Driving
Several lines of evidence suggest that the velocity amplitude in global
simulations of solar convection, U, may be systematically over-estimated.
Motivated by these recent results, we explore the factors that determine U and
we consider how these might scale to solar parameter regimes. To this end, we
decrease the thermal diffusivity along two paths in parameter space.
If the kinematic viscosity is decreased proportionally with
(fixing the Prandtl number ), we find that U increases but
asymptotes toward a constant value, as found by Featherstone & Hindman (2016).
However, if is held fixed while decreasing (increasing ),
we find that U systematically decreases. We attribute this to an enhancement of
the thermal content of downflow plumes, which allows them to carry the solar
luminosity with slower flow speeds. We contrast this with the case of
Rayleigh-Benard convection which is not subject to this luminosity constraint.
This dramatic difference in behavior for the two paths in parameter space
(fixed or fixed ) persists whether the heat transport by unresolved,
near-surface convection is modeled as a thermal conduction or as a fixed flux.
The results suggest that if solar convection can operate in a high-
regime, then this might effectively limit the velocity amplitude. Small-scale
magnetism is a possible source of enhanced viscosity that may serve to achieve
this high- regime.Comment: 34 Pages, 8 Figures, submitted to a special issue of "Advances in
Space Research" on "Solar Dynamo Frontiers
Cervicalgies : résultats de la surveillance épidémiologique des TMS dans les entreprises des Pays de la Loire - Facteurs de risque de cervicalgies dans la population salariée des Pays de la Loire
Women, ethnicity and nationalisms in Latin America
Gutierrez Chong, Natividad (ed. lit.) "Women, ethnicity and nationalisms in Latin America". Aldershot : Ashgate, 2007. 235 p. ISBN
978-075-464-925-0Nationalism is a multifaceted phenomenon that has recently become a focus of redefinition through new multidisciplinary and multi-method approaches. The complex links among gender, ethnicity and nationalism, neglected for a long time in academic research, are increasingly receiving coverage in the scholarly literature. The book "Women, Ethnicity and Nationalisms in Latin America”, edited by Natividad Gutiérrez Chong, systematically explores these links in the context of Latin America, with case studies covering Argentina, Ecuador, Bolivia and Mexico. Contributions are by leading Latin American scholars from diverse academic fields who share the aim of overcoming the limitations of the Eurocentric and androcentric framework that characterizes the main approaches to nationalism
Using 36Cl data to quantify the paleorecharge in arid region : example of the NorthWestern Saharan Aquifer System
Bloodstream infections and local access site infection surveillance program in hemodialysis, Vaud, Switzerland
- …
