2,933 research outputs found

    Expression pattern analysis of odorant-binding proteins in the pea aphid Acyrthosiphon pisum

    Get PDF
    Odorant-binding proteins (OBPs) are soluble proteins mediating chemoreception in insects. In previous research, we investigated the molecular mechanisms adopted by aphids to detect the alarm pheromone (E)-\u3b2-farnesene and we found that the recognition of this and structurally related molecules is mediated by OBP3 and OBP7. Here, we show the differential expression patterns of 5 selected OBPs (OBP1, OBP3, OBP6, OBP7, OBP8) obtained performing quantitative RT-PCR and immunolocalization experiments in different body parts of adults and in the 5 developmental instars, including winged and unwinged morphs, of the pea aphid Acyrthosiphon pisum. The results provide an overall picture that allows us to speculate on the relationship between the differential expression of OBPs and their putative function. The expression of OBP3, OBP6, and OBP7 in the antennal sensilla suggests a chemosensory function for these proteins, whereas the constant expression level of OBP8 in all instars could suggest a conserved role. Moreover, OBP1 and OBP3 are also expressed in nonsensory organs. A light and scanning electron microscopy study of sensilla on different body parts of aphid, in particular antennae, legs, mouthparts, and cornicles-cauda, completes this research providing a guide to facilitate the mapping of OBP expression profiles

    Amyloid/Melanin distinctive mark in invertebrate immunity

    Get PDF
    Protostomes and Deuterostomes show the same nexus between melanin production, and amyloid fibril production, i.e., the presence of melanin is indissolubly linked to amyloid scaffold that, in turn, is conditioned by the redox status/cytoplasmic pH modification, pro-protein cleavage presence, adrenocorticotropin hormone (ACTH), melanocyte-stimulating hormone (\u3b1-MSH), and neutral endopeptidase (NEP) overexpressions. These events represent the crucial component of immune response in invertebrates, while in vertebrates these series of occurrences could be interpreted as a modest and very restricted innate immune response. On the whole, it emerges that the mechanisms involving amyloid fibrils/pigment synthesis in phylogenetically distant metazoan (viz, cnidaria, molluscs, annelids, insects, ascidians and vertebrates) are evolutionary conserved. Furthermore, our data show the relationship between immune and neuroendocrine systems in amyloid/melanin synthesis. Indeed the process is closely associated to ACTH-\u3b1-MSH production, and their role in stress responses leading to pigment production reflects and confirms again their ancient phylogeny

    Measurement of the front-end dead-time of the LHCb muon detector and evaluation of its contribution to the muon detection inefficiency

    Full text link
    A method is described which allows to deduce the dead-time of the front-end electronics of the LHCb muon detector from a series of measurements performed at different luminosities at a bunch-crossing rate of 20 MHz. The measured values of the dead-time range from 70 ns to 100 ns. These results allow to estimate the performance of the muon detector at the future bunch-crossing rate of 40 MHz and at higher luminosity

    Performance of the LHCb muon system with cosmic rays

    Full text link
    The LHCb Muon system performance is presented using cosmic ray events collected in 2009. These events allowed to test and optimize the detector configuration before the LHC start. The space and time alignment and the measurement of chamber efficiency, time resolution and cluster size are described in detail. The results are in agreement with the expected detector performance.Comment: Submitted to JINST and accepte

    Optimization and calibration of the flavour tagging algorithms in the LHCb experiment

    Get PDF
    In what follows the calibration and performances of the flavour tagging algorithms using the decays B+ → J/ψK+, B0 → J/ψK∗0 and B0s → D−s π+ are reported. The data sample used correspond to 1.0 fb−1 of data collected by the LHCb experiment during 2011 (√s = 7TeV). The measured effective tagging efficiency is found to be 2.35 ± 0.06% for the opposite side tagging algorithms combination, while it is 1.5 ± 0.4% for same side kaon tagging algorithm

    The Lepidopteran endoribonuclease-U domain protein P102 displays dramatically reduced enzymatic activity and forms functional amyloids

    Get PDF
    Hemocytes of Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae produce a protein, P102, with a putative endoribonuclease-U domain. In previous works we have shown that P102 is involved in Lepidopteran immune response by forming amyloid fibrils, which catalyze and localize melanin deposition around non-self intruders during encapsulation, preventing harmful systemic spreading. Here we demonstrate that P102 belongs to a new class of proteins that, at least in Lepidoptera, has a diminished endoribonuclease-U activity probably due to the lack of two out of five catalytically essential residues. We show that the P102 homolog from Trichoplusia ni (Lepidoptera, Noctuidae) displays catalytic site residues identical to P102, a residual endoribonuclease-U activity and the ability to form functional amyloids. On the basis of these results as well as sequence and structural analyses, we hypothesize that all the Lepidoptera endoribonuclease-U orthologs with catalytic site residues identical to P102 form a subfamily with similar function

    G-Quadruplex Dynamics Contribute To Regulation Of Mitochondrial Gene Expression

    Get PDF
    Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells

    Performance of the Muon Identification at LHCb

    Full text link
    The performance of the muon identification in LHCb is extracted from data using muons and hadrons produced in J/\psi->\mu\mu, \Lambda->p\pi and D^{\star}->\pi D0(K\pi) decays. The muon identification procedure is based on the pattern of hits in the muon chambers. A momentum dependent binary requirement is used to reduce the probability of hadrons to be misidentified as muons to the level of 1%, keeping the muon efficiency in the range of 95-98%. As further refinement, a likelihood is built for the muon and non-muon hypotheses. Adding a requirement on this likelihood that provides a total muon efficiency at the level of 93%, the hadron misidentification rates are below 0.6%.Comment: 17 pages, 10 figure

    Study of charmonium production in b -hadron decays and first evidence for the decay Bs0

    Get PDF
    Using decays to φ-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fb−1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting byBC ≡ B(b → C X) × B(C → φφ) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of φ mesons, ratios RC1C2 ≡ BC1 /BC2 are determined as Rχc0ηc(1S) = 0.147 ± 0.023 ± 0.011, Rχc1ηc(1S) =0.073 ± 0.016 ± 0.006, Rχc2ηc(1S) = 0.081 ± 0.013 ± 0.005,Rχc1 χc0 = 0.50 ± 0.11 ± 0.01, Rχc2 χc0 = 0.56 ± 0.10 ± 0.01and Rηc(2S)ηc(1S) = 0.040 ± 0.011 ± 0.004. Here and below the first uncertainties are statistical and the second systematic.Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and χc2(2P) states are obtained as RX(3872)χc1 < 0.34, RX(3915)χc0 < 0.12 andRχc2(2P)χc2 < 0.16. Differential cross-sections as a function of transverse momentum are measured for the ηc(1S) andχc states. The branching fraction of the decay B0s → φφφ is measured for the first time, B(B0s → φφφ) = (2.15±0.54±0.28±0.21B)×10−6. Here the third uncertainty is due to the branching fraction of the decay B0s → φφ, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse φ polarization is observed.The measurements allow the determination of the ratio of the branching fractions for the ηc(1S) decays to φφ and p p asB(ηc(1S)→ φφ)/B(ηc(1S)→ p p) = 1.79 ± 0.14 ± 0.32

    Measurement of the mass and lifetime of the Ωb\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 ΩbΩc0π\Omega_b^-\to\Omega_c^0\pi^-, Ωc0pKKπ+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the ΞbΞc0π\Xi_b^-\to\Xi_c^0\pi^-, Ξc0pKKπ+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩbmΞbm_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
    corecore