4,147 research outputs found
Fracture and Friction: Stick-Slip Motion
We discuss the stick-slip motion of an elastic block sliding along a rigid
substrate. We argue that for a given external shear stress this system shows a
discontinuous nonequilibrium transition from a uniform stick state to uniform
sliding at some critical stress which is nothing but the Griffith threshold for
crack propagation. An inhomogeneous mode of sliding occurs, when the driving
velocity is prescribed instead of the external stress. A transition to
homogeneous sliding occurs at a critical velocity, which is related to the
critical stress. We solve the elastic problem for a steady-state motion of a
periodic stick-slip pattern and derive equations of motion for the tip and
resticking end of the slip pulses. In the slip regions we use the linear
viscous friction law and do not assume any intrinsic instabilities even at
small sliding velocities. We find that, as in many other pattern forming
system, the steady-state analysis itself does not select uniquely all the
internal parameters of the pattern, especially the primary wavelength. Using
some plausible analogy to first order phase transitions we discuss a ``soft''
selection mechanism. This allows to estimate internal parameters such as crack
velocities, primary wavelength and relative fraction of the slip phase as
function of the driving velocity. The relevance of our results to recent
experiments is discussed.Comment: 12 pages, 7 figure
On the diel rhythm of motor activity in perch [Translation from: Informatsionnyi Byulleten Biologiya Vnutrennikh Vod No.30, 12-14, 1976]
The river perch (Perca fluviatilis L.) is most active in the daytime hours, and displays seasonal changes of diel rhythm with a break of the rhythm in spring and autumn. In the present work data were obtained on the motor activity of 3 perch measuring l8-20 cm, caught by net in the littoral of a reservoir and spawned under laboratory conditions. The degree of intensity of movement of perch was judged by special experiments. The results are summarised in this short paper
N-terminus of pro-EMAP II regulates its binding with C-terminus, Arginyl-tRNA Synthetase, and Neurofilament light protein
Pro-EMAP II, one component of the Multi-Aminoacyl tRNA Synthetase (MSC) Complex, plays multiple roles in physiological and pathological processes of protein translation, signal transduction, immunity, lung development and tumor growth. Recent studies determined that pro-EMAP II has an essential role in maintaining axon integrity in central and peripheral neural systems where deletion of pro-EMAP IIs C-terminus was reported in a consanguineous Israeli Bedouin kindred suffering from Pelizaeus-Merzbacher-like disease. We hypothesized that pro-EMAP IIs N-terminus had an important role in the regulation of protein-protein interactions. Using a GFP reporter system, we defined a putative leucine-zipper in the N-terminus of human pro-EMAP II protein (amino acid residues 1-70), which can form specific strip-like punctate structures. Through GFP punctate analysis, we uncovered that pro-EMAP IIs C-terminus (147-312 amino acid residues) can repress the GFP punctate formation. Pull-down assays confirmed the binding between pro-EMAP II N-terminus and its C-terminus is mediated by a putative leucine-zipper. Furthermore, the pro-EMAP II 1-70 aa region was identified as the binding partner of the arginyl-tRNA synthetase (RARS), a polypeptide of MSC complex. We also determined that the punctate GFP pro-EMAP II 1-70aa aggregate co-localizes and binds to the neurofilament light (NFL) subunit protein that is associated with pathologic neurofilament network disorganization and degeneration of motor neurons. These findings indicate the structure and binding interaction of Pro-EMAP II protein and suggest a role of this protein in the pathological neurodegenerative diseases
Classical nonlinear response of a chaotic system: Langevin dynamics and spectral decomposition
We consider the classical response of a strongly chaotic Hamiltonian system.
The spectrum of such a system consists of discrete complex Ruelle-Pollicott
(RP) resonances which manifest themselves in the behavior of the correlation
and response functions. We interpret the RP resonances as the eigenstates and
eigenvalues of the Fokker-Planck operator obtained by adding an infinitesimal
noise term to the first-order Liouville operator. We demonstrate how the
deterministic expression for the linear response is reproduced in the limit of
vanishing noise. For the second-order response we establish an equivalence of
the spectral decomposition with infinitesimal noise and the long-time
asymptotic expansion for the deterministic case.Comment: 16 pages, 1 figur
Two-dimensional electron gas formation in undoped In[0.75]Ga[0.25]As/In[0.75]Al[0.25]As quantum wells
We report on the achievement of a two-dimensional electron gas in completely
undoped In[0.75]Al[0.25]As/In[0.75]Ga[0.25]As metamorphic quantum wells. Using
these structures we were able to reduce the carrier density, with respect to
reported values in similar modulation-doped structures. We found experimentally
that the electronic charge in the quantum well is likely due to a deep-level
donor state in the In[0.75]Al[0.25]As barrier band gap, whose energy lies
within the In[0.75]Ga[0.25]As/In[0.75]Al[0.25]As conduction band discontinuity.
This result is further confirmed through a Poisson-Schroedinger simulation of
the two-dimensional electron gas structure.Comment: 17 pages, 6 figures, to be published in J. Vac. Sci. Technol.
The AMS-RICH velocity and charge reconstruction
The AMS detector, to be installed on the International Space Station,
includes a Ring Imaging Cerenkov detector with two different radiators, silica
aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to
provide very precise measurements of velocity and electric charge in a wide
range of cosmic nuclei energies and atomic numbers. The detector geometry, in
particular the presence of a reflector for acceptance purposes, leads to
complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The
results of different reconstruction methods applied to test beam data as well
as to simulated samples are presented. To ensure nominal performances
throughout the flight, several detector parameters have to be carefully
monitored. The algorithms developed to fulfill these requirements are
presented. The velocity and charge measurements provided by the RICH detector
endow the AMS spectrometer with precise particle identification capabilities in
a wide energy range. The expected performances on light isotope separation are
discussed.Comment: Contribution to the ICRC07, Merida, Mexico (2007); Presenter: F.
Bara
Quantum creep and variable range hopping of one-dimensional interacting electrons
The variable range hopping results for noninteracting electrons of Mott and
Shklovskii are generalized to 1D disordered charge density waves and Luttinger
liquids using an instanton approach. Following a recent paper by Nattermann,
Giamarchi and Le Doussal [Phys. Rev. Lett. {\bf 91}, 56603 (2003)] we calculate
the quantum creep of charges at zero temperature and the linear conductivity at
finite temperatures for these systems. The hopping conductivity for the short
range interacting electrons acquires the same form as for noninteracting
particles if the one-particle density of states is replaced by the
compressibility. In the present paper we extend the calculation to dissipative
systems and give a discussion of the physics after the particles materialize
behind the tunneling barrier. It turns out that dissipation is crucial for
tunneling to happen. Contrary to pure systems the new metastable state does not
propagate through the system but is restricted to a region of the size of the
tunneling region. This corresponds to the hopping of an integer number of
charges over a finite distance. A global current results only if tunneling
events fill the whole sample. We argue that rare events of extra low tunneling
probability are not relevant for realistic systems of finite length. Finally we
show that an additional Coulomb interaction only leads to small logarithmic
corrections.Comment: 15 pages, 3 figures; references adde
A facility to Search for Hidden Particles (SHiP) at the CERN SPS
A new general purpose fixed target facility is proposed at the CERN SPS
accelerator which is aimed at exploring the domain of hidden particles and make
measurements with tau neutrinos. Hidden particles are predicted by a large
number of models beyond the Standard Model. The high intensity of the SPS
400~GeV beam allows probing a wide variety of models containing light
long-lived exotic particles with masses below (10)~GeV/c,
including very weakly interacting low-energy SUSY states. The experimental
programme of the proposed facility is capable of being extended in the future,
e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa
Late Little Ice Age palaeoenvironmental records from the Anzali and Amirkola Lagoons (south Caspian Sea): Vegetation and sea level changes
This is a postprint version of the article. The official published article can be found from the link below - Copyright @ 2011 Elsevier Ltd.Two internationally important Ramsar lagoons on the south coast of the Caspian Sea (CS) have been studied by palynology on short sediment cores for palaeoenvironmental and palaeoclimatic investigations. The sites lie within a small area of very high precipitation in a region that is otherwise dry. Vegetation surveys and geomorphological investigations have been used to provide a background to a multidisciplinary interpretation of the two sequences covering the last four centuries. In the small lagoon of Amirkola, the dense alder forested wetland has been briefly disturbed by fire, followed by the expansion of rice paddies from AD1720 to 1800. On the contrary, the terrestrial vegetation reflecting the diversity of the Hyrcanian vegetation around the lagoon of Anzali remained fairly complacent over time. The dinocyst and non-pollen palynomorph assemblages, revealing changes that have occurred in water salinity and water levels, indicate a high stand during the late Little Ice Age (LIA), from AD < 1620 to 1800–1830. In Amirkola, the lagoon spit remained intact over time, whereas in Anzali it broke into barrier islands during the late LIA, which merged into a spit during the subsequent sea level drop. A high population density and infrastructure prevented renewed breaking up of the spit when sea level reached its maximum (AD1995). Similar to other sites in the region around the southern CS, these two lagoonal investigations indicate that the LIA had a higher sea level as a result of more rainfall in the drainage basin of the CS.The coring and the sedimentological analyses were funded by the Iranian National Institute for Oceanography in the framework of a research project entitled “Investigation of the Holocene sediment along the Iranian coast of Caspian Sea: central Guilan”. The radiocarbon date of core HCGL02 was funded by V. Andrieu (Europôle Méditerranéen de l'Arbois, France) and that of core HCGA04 by Brunel University
- …
