5,469 research outputs found
A wireless ultrasonic NDT sensor system
Ultrasonic condition monitoring technologies have been traditionally utilized in industrial and construction environments where structural integrity is of concern. Such techniques include active systems with either single or multiple transmit-receiver combinations used to obtain defect positioning and magnitude. Active sensors are implemented in two ways; in a thickness operation mode, or as an area-mapping tool operating over longer distances. In addition, passive ultrasonic receivers can be employed to detect and record acoustic emission activity. Existing equipment requires cabling for such systems leading to expensive, complicated installations. This work describes the development and operation of a system that combines these existing ultrasonic technologies with modern wireless techniques within a miniaturized, battery-operated design. A completely wireless sensor has been designed that can independently record and analyze ultrasonic signals. Integrated into the sensor are custom ultrasonic transducers, associated analogue drive and receive electronics, and a Texas Instruments Digital Signal Processor (DSP) used to both control the system and implement the signal processing routines. BlueTooth wireless communication is used for connection to a central observation station, from where network operation can be controlled. Extending battery life is of prime importance and the device employs several strategies to do this. Low voltage transducer excitation suffers from poor signal-to-noise ratios, which can be enhanced by signal processing routines implemented on the DSP. Routines investigated include averaging, digital filtering and pulse compression
Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides
We report on systematic experimental mapping of the transmission properties
of two-dimensional silicon-on-insulator photonic crystal waveguides for a broad
range of hole radii, slab thicknesses and waveguide lengths for both TE and TM
polarizations. Detailed analysis of numerous spectral features allows a direct
comparison of experimental data with 3D plane wave and finite-difference
time-domain calculations. We find, counter-intuitively, that the bandwidth for
low-loss propagation completely vanishes for structural parameters where the
photonic band gap is maximized. Our results demonstrate that, in order to
maximize the bandwidth of low-loss waveguiding, the hole radius must be
significantly reduced. While the photonic band gap considerably narrows, the
bandwidth of low-loss propagation in PhC waveguides is increased up to 125nm
with losses as low as 82dB/cm.Comment: 10 pages, 8 figure
Melody based tune retrieval over the World Wide Web
In this paper we describe the steps taken to develop a Web-based version of an existing stand-alone, single-user digital library application for melodical searching of a collection of music. For the three key components: input, searching, and output, we assess the suitability of various Web-based strategies that deal with the now distributed software architecture and explain the decisions we made. The resulting melody indexing service, known as MELDEX, has been in operation for one year, and the feed-back we have received has been favorable
Coupling into the slow light mode in slab-type photonic crystal waveguides
Coupling of external light signals into a photonic crystal waveguide becomes
increasingly inefficient as the group velocity of the waveguiding mode slows
down. We have systematically studied the efficiency of coupling in the slow
light regime for samples with different truncations of the photonic lattice at
the coupling interface. Inverse power law dependence is found to best fit the
experimental scaling of the coupling loss on the group index. Coupling
efficiency is found to be significantly improved up to group indices of 100 for
a truncation of the lattice that favors the appearance of the photonic surface
states at the coupling interface in resonance with the slow light mode.Comment: 3 pages, 3 figures, final revised versio
Transmission of Slow Light through Photonic Crystal Waveguide Bends
The spectral dependence of a bending loss of cascaded 60-degree bends in
photonic crystal (PhC) waveguides is explored in a slab-type
silicon-on-insulator system. Ultra-low bending loss of (0.05+/-0.03)dB/bend is
measured at wavelengths corresponding to the nearly dispersionless transmission
regime. In contrast, the PhC bend is found to become completely opaque for
wavelengths range corresponding to the slow light regime. A general strategy is
presented and experimentally verified to optimize the bend design for improved
slow light transmission.Comment: 4 pages, 3 figures; submitted to Optics Letter
Radiative properties of advanced spacecraft heat shield materials
Experimental results are presented to show the effects of simulated reentry exposure by convective heating and by radiant heating on spectral and total emittance of statically oxidized Inconel 617 and Haynes HS188 superalloys to 1260 K and a silicide coatea (R512E) columbium 752 alloy to 1590 K. Convective heating exposures were conducted in a supersonic arc plasma wind tunnel using a wedge-shaped specimen configuration. Radiant tests were conducted at a pressure of .003 atmospheres of dry air at a flow velocity of several meters per second. Convective heating specimens were subjected to 8, 20, and 38 15-min heating cycles, and radiant heating specimens were tested for 10, 20, 50, and 100 30-min heating cycles. Changes in radiative properties are explained in terms of changes in composition resulting from simulated reentry tests. The methods used to evaluate morphological, compositional and crystallographic changes include: Auger electron spectroscopy; scanning electron microscopy; X-ray diffraction analysis; and electron microprobe analysis
Mode mixing in asymmetric double trench photonic crystal waveguides
e investigate both experimentally and theoretically the waveguiding
properties of a novel double trench waveguide where a conventional single-mode
strip waveguide is embedded in a two dimensional photonic crystal (PhC) slab
formed in silicon on insulator (SOI) wafers. We demonstrate that the bandwidth
for relatively low-loss (50dB/cm) waveguiding is significantly expanded to
250nm covering almost all the photonic band gap owing to nearly linear
dispersion of the TE-like waveguiding mode. The flat transmission spectrum
however is interrupted by numerous narrow stop bands. We found that these stop
bands can be attributed to anti-crossing between TE-like (positive parity) and
TM-like (negative parity) modes. This effect is a direct result of the strong
asymmetry of the waveguides that have an upper cladding of air and lower
cladding of oxide. To our knowledge this is the first demonstration of the
effects of cladding asymmetry on the transmission characteristics of the PhC
slab waveguides.Comment: 7 pages, 6 figure
- …
