6,573 research outputs found

    Dunkl operators at infinity and Calogero-Moser systems

    Full text link
    We define the Dunkl and Dunkl-Heckman operators in infinite number of variables and use them to construct the quantum integrals of the Calogero-Moser-Sutherland problems at infinity. As a corollary we have a simple proof of integrability of the deformed quantum CMS systems related to classical Lie superalgebras. We show how this naturally leads to a quantum version of the Moser matrix, which in the deformed case was not known before.Comment: 22 pages. Corrected version with minor change

    Deformed quantum Calogero-Moser problems and Lie superalgebras

    Get PDF
    The deformed quantum Calogero-Moser-Sutherland problems related to the root systems of the contragredient Lie superalgebras are introduced. The construction is based on the notion of the generalized root systems suggested by V. Serganova. For the classical series a recurrent formula for the quantum integrals is found, which implies the integrability of these problems. The corresponding algebras of the quantum integrals are investigated, the explicit formulas for their Poincare series for generic values of the deformation parameter are presented.Comment: 30 pages, 1 figur

    Ground states of Heisenberg evolution operator in discrete three-dimensional space-time and quantum discrete BKP equations

    Full text link
    In this paper we consider three-dimensional quantum q-oscillator field theory without spectral parameters. We construct an essentially big set of eigenstates of evolution with unity eigenvalue of discrete time evolution operator. All these eigenstates belong to a subspace of total Hilbert space where an action of evolution operator can be identified with quantized discrete BKP equations (synonym Miwa equations). The key ingredients of our construction are specific eigenstates of a single three-dimensional R-matrix. These eigenstates are boundary states for hidden three-dimensional structures of U_q(B_n^1) and U_q(D_n^1)$.Comment: 13 page
    corecore