300 research outputs found
Aptamer-based cocaine assay using a nanohybrid composed of ZnS/Ag2Se quantum dots, graphene oxide and gold nanoparticles as a fluorescent probe
Authors report on a new fluoro-graphene-plasmonic nanohybrid aptamer-based fluorescent nanoprobe for cocaine. To construct the nanoprobe, newly synthesized glutathione-capped ZnS/Ag 2Se quantum dots (QDs) were first conjugated to graphene oxide (GO) to form a QD-GO nanocomposite. The binding interaction resulted in a fluorescence turn-ON. Thereafter, cetyltrimethylammonium bromide (CTAB)-gold nanoparticles (AuNPs) were directly adsorbed on the QD-GO nanocomposite to form a novel QD-GO-CTAB-AuNP nanohybrid assembly that resulted in a fluorescence turn-OFF. Streptavidin (strep) was then adsorbed on the QDs-GO-CTAB-AuNP nanohybrid assembly which allowed binding to a biotinylated MNS 4.1 anticocaine DNA aptamer (B) receptor. The addition of cocaine into the strep-B-QDs-GO-CTAB-AuNP aptamer nanoprobe system aided affinity to the aptamer receptor and in turn turned on the fluorescence of the nanoprobe in a concentration-dependent manner. Under optimum experimental conditions, we found the strep-B-QD-GO-CTAB-AuNP to be far superior in its sensitivity to cocaine than the tested strep-B-QDs (no GO and CTAB-AuNPs), strep-B-QD-CTAB-AuNP (no GO) and strep-B-QD-GO (no CTAB-AuNP). In addition, the investigation of localized surface plasmon resonance (LSPR) amplified signal from tested plasmonic NPs shows that CTAB-AuNPs was far superior in amplifying the fluorescence signal of the nanoprobe. A detection limit of 4.6 nM (1.56 ng.mL −1), rapid response time (~2 min) and excellent selectivity against other drugs, substances and cocaine metabolites was achieved. The strep-B-QD-GO-CTAB-AuNP aptamer-based fluorescent nanoprobe was successfully applied for the determination of cocaine in seized adulterated cocaine samples.</p
Nanosecond Laser Surface Silver Metallization of Wet Ion Exchanged Glasses
Silver ions are embedded in glass slides by a traditional "wet" ion exchange technique. The glass slides irradiation by 10 ns laser pulses at 355 nm wavelength leads to the formation of metal-like film at the surface. Scanning electron microscopy shows that the films presents a dense layer of silver nanoparticles about the same size and separation. Varying the irradiation parameters results in a significant difference in the transmission spectra of the slides. Particle size grows when the laser power increases.<br/
Surface plasmon resonance assisted rapid laser joining of glass
Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm2 and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices
Low secondary electron yield engineered surface for electron cloud mitigation
Secondary electron yield (SEY or δ) limits the performance of a number of devices. Particularly, in high-energy charged particle accelerators, the beam-induced electron multipacting is one of the main sources of electron cloud (e-cloud) build up on the beam path; in radio frequency wave guides, the electron multipacting limits their lifetime and causes power loss; and in detectors, the secondary electrons define the signal background and reduce the sensitivity. The best solution would be a material with a low SEY coating and for many applications δ < 1 would be sufficient. We report on an alternative surface preparation to the ones that are currently advocated. Three commonly used materials in accelerator vacuum chambers (stainless steel, copper, and aluminium) were laser processed to create a highly regular surface topography. It is shown that this treatment reduces the SEY of the copper, aluminium, and stainless steel from δmax of 1.90, 2.55, and 2.25 to 1.12, 1.45, and 1.12, respectively. The δmax further reduced to 0.76-0.78 for all three treated metals after bombardment with 500 eV electrons to a dose between 3.5 × 10-3 and 2.0 × 10-2 C·mm-2
Proposal for a Council Regulation (EEC) derogating from Article 21 of Regulation (EEC) No 1035/72 on the common organization of the market in fruit and vegetables
We present the results of an experimental and numerical investigation into temporally nonlocal coherent interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe, pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the experiments reported, a DW is emitted at ∼300 nm and exhibits a wiggling effect, with its central frequency oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet
Role of surface microgeometries on electron escape probability and secondary electron yield of metal surfaces
The influence of microgeometries on the Secondary Electron Yield (SEY) of surfaces is investigated. Laser written structures of different aspect ratio (height to width) on a copper surface tuned the SEY of the surface and reduced its value to less than unity. The aspect ratio of microstructures was methodically controlled by varying the laser parameters. The results obtained corroborate a recent theoretical model of SEY reduction as a function of the aspect ratio of microstructures. Nanostructures - which are formed inside the microstructures during the interaction with the laser beam - provided further reduction in SEY comparable to that obtained in the simulation of structures which were coated with an absorptive layer suppressing secondary electron emission
High-performance thermal emitters based on laser engineered metal surfaces
Effective thermal management is of paramount importance for all high-temperature
systems operating under vacuum. Cooling of such systems relies mainly on radiative heat transfer
requiring high spectral emissivity of surfaces, which is strongly affected by the surface condition.
Pulsed laser structuring of stainless steel in air resulted in the spectral hemispherical emissivity
values exceeding 0.95 in the 2.5–15 µm spectral region. The effects of surface oxidation and
topography on spectral emissivity as well as high temperature stability of the surface structures
were examined. High performance stability of the laser textured surfaces was confirmed after
thermal aging studies at 320°C for 96 hour
Fine Structure of Avalanches in the Abelian Sandpile Model
We study the two-dimensional Abelian Sandpile Model on a square lattice of
linear size L. We introduce the notion of avalanche's fine structure and
compare the behavior of avalanches and waves of toppling. We show that
according to the degree of complexity in the fine structure of avalanches,
which is a direct consequence of the intricate superposition of the boundaries
of successive waves, avalanches fall into two different categories. We propose
scaling ans\"{a}tz for these avalanche types and verify them numerically. We
find that while the first type of avalanches has a simple scaling behavior, the
second (complex) type is characterized by an avalanche-size dependent scaling
exponent. This provides a framework within which one can understand the failure
of a consistent scaling behavior in this model.Comment: 10 page
- …
