6 research outputs found

    Indirect energy flow measurement in magneto-sensitive vibration isolator systems

    Full text link
    The indirect energy flow measurement method is extended to cover highly nonlinear, frequency, amplitude and magnetic field dependent magneto-sensitive natural rubber isolators applied in a real vibration isolation system. Energy flow is an effective measure of vibration isolation while being a single quantity that considers both force and velocity. The use of the indirect technique is of interest while requiring only accelerometers since it is usually difficult to directly measure the force in a real application. The vibration isolation system is composed of four magneto-sensitive rubber isolators that are inserted under a vibrating source consisting of a solid aluminium mass excited by an electro-dynamic shaker. Magneto-sensitive rubber isolators are more useful than conventional rubber isolators since the dynamic stiffness varies with the application of an external magnetic field, thus resulting in more effective vibration isolation. Various approximations regarding the indirect technique are investigated, concluding that average stiffness of magneto-sensitive isolators can be used and auto-spectrum of the foundation velocity ignored. In addition, various error analyses are performed. Finally, the indirect measurement of the energy flow is validated by direct measurements, showing very good agreement.</p

    Direct energy flow measurement in magneto-sensitive vibration isolator systems

    Full text link
    The effectiveness of highly nonlinear, frequency, amplitude and magnetic field dependent magneto-sensitive natural rubber components applied in a vibration isolation system is experimentally investigated by measuring the energy flow into the foundation. The energy flow, including both force and velocity of the foundation, is a suitable measure of the effectiveness of a real vibration isolation system where the foundation is not perfectly rigid. The vibration isolation system in this study consists of a solid aluminium mass supported on four magneto-sensitive rubber components and is excited by an electro-dynamic shaker while applying various excitation signals, amplitudes and positions in the frequency range of 20-200 Hz and using magneto-sensitive components at zero-field and at magnetic saturation. The energy flow through the magneto-sensitive rubber isolators is directly measured by inserting a force transducer below each isolator and an accelerometer on the foundation close to each isolator. This investigation provides novel practical insights into the potential of using magneto-sensitive material isolators in noise and vibration control, including their advantages compared to traditional vibration isolators. Finally, nonlinear features of magneto-sensitive components are experimentally verified.</p

    Mechanical Properties of Rubber Nanocomposites Containing Carbon Nanofillers

    No full text
    corecore