466 research outputs found
BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT.
The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic SCT (allo-HSCT). We applied whole-genome analysis to investigate genetic variants - other than HLA class I and II - associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single-nucleotide polymorphisms (SNPs) in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong linkage disequilibrium between each other (R2 =0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P<0.00001 for BAT2 SNP rs11538264, and P<0.0001 for BAT3 SNP rs10484558), whereas the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs 2.6%, nominal P=1.15 × 10-8; and adjusted P=0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent a novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT
Improvement in hemodynamic responses to metaboreflex activation after one year of training in spinal cord injured humans
Recommended from our members
The effect of vascular changes on the photoplethysmographic signal at different hand elevations
In order to further understand the contribution of venous and arterial effects to the photoplethysmographic (PPG) signal, recordings were made from twenty healthy volunteer subjects during an exercise in which the right hand was raised and lowered with reference to heart level. Red (R) and infrared (IR) PPG signals were obtained from the right index finger using a custom-made PPG processing system. Laser Doppler flowmetry (LDF) signals were also recorded from an adjacent fingertip. The signals were compared with simultaneous PPG signals obtained from the left index finger. On lowering the hand to 50 cm below heart level, both ac and dc PPG amplitudes from the finger decreased (e.g. 18.70% and 63.15% decrease in infrared dc and ac signals respectively). The decrease in dc amplitude most likely corresponded to increased venous volume, while the decrease in ac PPG amplitude was due to regulatory adjustments on the arterial side in response to venous distension. Conversely, ac and dc PPG amplitudes increased on raising the arm above heart level. Morphological changes in the ac PPG signal are thought to be due to vascular resistance changes, predominately venous, as the hand position is changed
Ischemic preconditioning of the muscle reduces the metaboreflex response of the knee extensors
Purpose: This study investigated the effect of ischemic preconditioning (IP) on metaboreflex activation following dynamic leg extension exercise in a group of healthy participants. Method: Seventeen healthy participants were recruited. IP and SHAM treatments (3 × 5 min cuff occlusion at 220 mmHg or 20 mmHg, respectively) were administered in a randomized order to the upper part of exercising leg’s thigh only. Muscle pain intensity (MP) and pain pressure threshold (PPT) were monitored while administrating IP and SHAM treatments. After 3 min of leg extension exercise at 70% of the maximal workload, a post-exercise muscle ischemia (PEMI) was performed to monitor the discharge group III/IV muscle afferents via metaboreflex activation. Hemodynamics were continuously recorded. MP was monitored during exercise and PEMI. Results: IP significantly reduced mean arterial pressure compared to SHAM during metaboreflex activation (mean ± SD, 109.52 ± 7.25 vs. 102.36 ± 7.89 mmHg) which was probably the consequence of a reduced end diastolic volume (mean ± SD, 113.09 ± 14.25 vs. 102.42 ± 9.38 ml). MP was significantly higher during the IP compared to SHAM treatment, while no significant differences in PPT were found. MP did not change during exercise, but it was significantly lower during the PEMI following IP (5.10 ± 1.29 vs. 4.00 ± 1.54). Conclusion: Our study demonstrated that IP reduces hemodynamic response during metaboreflex activation, while no effect on MP and PPT were found. The reduction in hemodynamic response was likely the consequence of a blunted venous return
Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations : design, characterisation, toxicity and transcorneal permeation studies
This study was aimed at preparing, characterising and evaluating in situ gel formulations based on a blend of two hydrophilic polymers i.e. poloxamer 407 (P407) and poloxamer 188 (P188) for a sustained ocular delivery of ketorolac tromethamine (KT). Drug-polymer interaction studies were performed using {DSC} and FT-IR. The gelation temperature (Tsol-gel), gelation time, rheological behaviour, mucoadhesive characteristics of these gels, transcorneal permeation and ocular irritation as well as toxicity was investigated. {DSC} and FT-IR studies revealed that there may be electrostatic interactions between the drug and the polymers used. {P188} modified the Tsol/gel of {P407} bringing it close to eye temperature (35°C) compared with the formulation containing {P407} alone. Moreover, gels that comprised {P407} and {P188} exhibited a pseudoplastic behaviour at different concentrations. Furthermore, mucoadhesion study using mucin discs showed that in situ gel formulations have good mucoadhesive characteristics upon increasing the concentration of P407. When comparing formulations {PP11} and PP12, the work of adhesion decreased significantly (P < 0.001) from 377.9 ± 7.79 mN.mm to 272.3 ± 6.11 mN.mm. In vitro release and ex vivo permeation experiments indicated that the in situ gels were able to prolong and control {KT} release as only 48 of the {KT} released within 12 h. In addition, the HET-CAM and {BCOP} tests confirmed the non-irritancy of {KT} loaded in situ gels, and HET-CAM test demonstrated the ability of ocular protection against strongly irritant substances. {MTT} assay on primary corneal epithelial cells revealed that in situ gel formulations loaded with {KT} showed reasonable and acceptable percent cell viability compared with control samples
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
KSHV gB associated RGD interactions promote attachment of cells by inhibiting the potential migratory signals induced by the disintegrin-like domain
Background: Kaposi's sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is not only expressed on the envelope of mature virions but also on the surfaces of cells undergoing lytic replication. Among herpesviruses, KSHV gB is the only glycoprotein known to possess the RGD (Arg-Gly-Asp) binding integrin domain critical to mediating cell attachment. Recent studies described gB to also possess a disintegrin-like domain (DLD) said to interact with non-RGD binding integrins. We wanted to decipher the roles of two individually distinct integrin binding domains (RGD versus DLD) within KSHV gB in regulating attachment of cells over cell migration
Seeking Correlation Among Porin Permeabilities and Minimum Inhibitory Concentrations Through Machine Learning: A Promising Route to the Essential Molecular Descriptors
Developing effective antibiotics against Gram-negative bacteria remains challenging due to their protective outer membrane. With this study, we investigated the relationship between antibiotic permeation through the OmpF porin of Escherichia coli and antimicrobial efficacy. We measured the relative permeability coefficients (RPCs) through the bacterial porin by liposome swelling assays, including non-antibacterial molecules, and the minimum inhibitory concentrations (MICs) against E. coli. We developed a machine learning (ML) approach by combining classification and regression models to correlate these data sets. Our strategy allowed us to quantify the negative correlation between RPC and MIC values, clearly indicating that increased permeability through OmpF generally leads to improved antimicrobial activity. Moreover, the correlation was remarkable only for compounds with significant permeability coefficients. Conversely, when permeation ability is low, other factors play the most significant role in antimicrobial potency. Importantly, the proposed ML-based approach was set by exploiting the available seminal information from previous investigations in order to keep the number of molecular descriptors to the minimum for greater interpretability. This provided valuable insights into the complex interplay between different molecular properties in defining the overall outer membrane permeation and, consequently, the antimicrobial efficacy. From a practical perspective, the presented approach does not aim at identifying the “golden rule” for boosting antibiotic potency. The automated protocol presented here could be used to inspect, in silico, many alternatives of a given molecular structure, with the output being the list of the best candidates to be then synthesized and tested. This could be a valuable in silico tool for researchers in both academia and industry to rapidly evaluate novel potential compounds and reduce costs and time during the early drug discovery stage
Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia
Purpose: To investigate the effects of caffeine on performance, neuromuscular fatigue and perception of effort during high-intensity cycling exercise in moderate hypoxia. Methods: Seven adult male participants firstly underwent an incremental exercise test on a cycle ergometer in conditions of acute normobaric hypoxia (fraction inspired oxygen = 0.15) to establish peak power output (PPO). In the following two visits, they performed a time to exhaustion test (78 ± 3% PPO) in the same hypoxic conditions after caffeine ingestion (4 mg kg) and one after placebo ingestion in a double-blind, randomized, counterbalanced cross-over design. Results: Caffeine significantly improved time to exhaustion by 12%. A significant decrease in subjective fatigue was found after caffeine consumption. Perception of effort and surface electromyographic signal amplitude of the vastus lateralis were lower and heart rate was higher in the caffeine condition when compared to placebo. However, caffeine did not reduce the peripheral and central fatigue induced by high-intensity cycling exercise in moderate hypoxia. Conclusion: The caffeine-induced improvement in time to exhaustion during high-intensity cycling exercise in moderate hypoxia seems to be mediated by a reduction in perception of effort, which occurs despite no reduction in neuromuscular fatigue
- …
