31,115 research outputs found
Network Information Flow in Small World Networks
Recent results from statistical physics show that large classes of complex
networks, both man-made and of natural origin, are characterized by high
clustering properties yet strikingly short path lengths between pairs of nodes.
This class of networks are said to have a small-world topology. In the context
of communication networks, navigable small-world topologies, i.e. those which
admit efficient distributed routing algorithms, are deemed particularly
effective, for example in resource discovery tasks and peer-to-peer
applications. Breaking with the traditional approach to small-world topologies
that privileges graph parameters pertaining to connectivity, and intrigued by
the fundamental limits of communication in networks that exploit this type of
topology, we investigate the capacity of these networks from the perspective of
network information flow. Our contribution includes upper and lower bounds for
the capacity of standard and navigable small-world models, and the somewhat
surprising result that, with high probability, random rewiring does not alter
the capacity of a small-world network.Comment: 23 pages, 8 fitures, submitted to the IEEE Transactions on
Information Theory, November 200
On the weak field approximation of Brans-Dicke theory of gravity
It is shown that in the weak field approximation solutions of Brans-Dicke
equations are simply related to the solutions of General Relativity equations
for the same matter distribution. A simple method is developed which permits to
obtain Brans-Dicke solutions from Einstein solutions when both theories are
considered in their linearized forms. To illustrate the method some examples
found in the literature are discussed.Comment: 12 pages, latex, no figure
Informed Network Coding for Minimum Decoding Delay
Network coding is a highly efficient data dissemination mechanism for
wireless networks. Since network coded information can only be recovered after
delivering a sufficient number of coded packets, the resulting decoding delay
can become problematic for delay-sensitive applications such as real-time media
streaming. Motivated by this observation, we consider several algorithms that
minimize the decoding delay and analyze their performance by means of
simulation. The algorithms differ both in the required information about the
state of the neighbors' buffers and in the way this knowledge is used to decide
which packets to combine through coding operations. Our results show that a
greedy algorithm, whose encodings maximize the number of nodes at which a coded
packet is immediately decodable significantly outperforms existing network
coding protocols.Comment: Proc. of the IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (IEEE MASS 2008), Atlanta, USA, September 200
- …
