143 research outputs found

    Mapping possible non-Gaussianity in the Planck maps

    Full text link
    [Abridged.] It is conceivable that no single statistical estimator can be sensitive to all forms and levels of non-Gaussianity that may be present in observed CMB data. In recent works a statistical procedure based upon the calculation of the skewness and kurtosis of the patches of CMB sky-sphere has been proposed and used to find out significant large-angle deviation from Gaussianity in the foreground-reduced WMAP maps. Here we address the question as to how the analysis of Gaussianity of WMAP maps is modified if the foreground-cleaned Planck maps are used, therefore extending and complementing the previous analyses in several regards. We carry out a new analysis of Gaussianity with the available nearly full-sky foreground-cleaned Planck maps. As the foregrounds are cleaned through different component separation procedures, each of the resulting Planck maps is then tested for Gaussianity. We determine quantitatively the effects for Gaussianity of masking the foreground-cleaned Planck maps with the INPMASK, VALMASK, and U73 Planck masks. We show that although the foreground-cleaned Planck maps present significant deviation from Gaussianity of different degrees when the less severe INPMASK and VALMASK are used, they become consistent with Gaussianity as detected by our indicator SS when masked with the union U73 mask. A slightly smaller consistency with Gaussianity is found when the KK indicator is employed, which seems to be associated with large-angle anomalies reported by the Planck team. Finally, we examine the robustness of the Gaussianity analyses with respect to the noise pixel's as given by the Planck team, and show that no appreciable changes arise when is incorporated into the maps. The results of our analyses provide important information about the suitability of the foreground-cleaned Planck maps as Gaussian reconstructions of the CMB sky.Comment: 10 pages, 4 figures. V2: Version to appear in A&A (2014), reformatted, typos corrected, references added, a word added in the titl

    Mapping the large-angle deviation from Gaussianity in simulated CMB maps

    Full text link
    [Abridged] In recent works we have proposed two new large-angle non-Gaussianity indicators based on skewness and kurtosis of patches of CMB sky-sphere, and used them to find out significant deviation from Gaussianity in frequency bands and foreground-reduced CMB maps. Simulated CMB maps with assigned type and amplitude of primordial non-Gaussianity are important tools to determine the strength, sensitivity and limitations of non-Gaussian estimators. Here we investigate whether and to what extent our non-Gaussian indicators have sensitivity to detect non-Gaussianity of local type, particularly with amplitude within the seven-year WMAP bounds. We make a systematic study by employing our statistical tools to generate maps of skewness and kurtosis from several thousands of simulated maps equipped with non-Gaussianity of local type of various amplitudes. We show that our indicators can be used to detect large-angle local-type non-Gaussianity only for relatively large values of the non-linear parameter fNLlocalf_{\rm NL}^{\rm local}. Thus, our indicators have not enough sensitivity to detect deviation from Gaussianity with the non-linear parameter within the seven-year WMAP bounds. This result along with the outcomes of frequency bands and foreground-reduced analyses suggest that non-Gaussianity captured in the previous works by our indicators is not of primordial origin, although it might have a primordial component. We have also made a comparative study of non-Gaussianity of simulated maps and of the full-sky WMAP foreground-reduced seven-year ILC-7yr map. An outcome of this analysis is that the level of non-Gaussianity of ILC-7yr map is higher than that of the simulated maps for fNLlocalf_{\rm NL}^{\rm local} within WMAP bounds. This provides quantitative indications on the suitability of the ILC-7yr map as a Gaussian reconstruction of the full-sky CMB.Comment: 9 pages, 5 figures, 3 tables. V2: Version published in PRD(2011). Appendix added. New figures, typos corrected, references adde

    A comparative study of non-Gaussianity in ILC-7yr CMB map

    Full text link
    A detection or non detection of primordial non--Gaussianity (NG) by using the cosmic microwave background radiation (CMB) is a possible way to break the degeneracy of early universe models. Since a single statistical estimator hardly can be sensitive to all possible forms of NG which may be present in the data, it is important to use different statistical estimators to study NG in CMB. Recently, two new large-angle NG indicators based on skewness and kurtosis of spherical caps or spherical cells of CMB sky have been proposed and used in both CMB data and simulated maps. Here, we make a comparative study of these two different procedures by examining the NG in the WMAP seven years ILC map. We show that the spherical cells procedure detects a higher level of NG than that obtained by the method with overlapping spherical caps.Comment: 8 pages, 3 figures; V2: Typos correcte

    A note on the large-angle anisotropies in the WMAP cut-sky maps

    Full text link
    Recent analyses of the WMAP data seem to indicate the possible presence of large-angle anisotropy in the Universe. If confirmed, these can have important consequences for our understanding of the Universe. A number of attempts have recently been made to establish the reality and nature of such anisotropies in the CMB data. Among these is a directional indicator recently proposed by the authors. A distinctive feature of this indicator is that it can be used to generate a sky map of the large-scale anisotropies of the CMB maps. Applying this indicator to full-sky temperature maps we found a statistically significant preferred direction. The full-sky maps used in these analyses are known to have residual foreground contamination as well as complicated noise properties. Thus, here we performed the same analysis for a map where regions with high foreground contamination were removed. We find that the main feature of the full-sky analysis, namely the presence of a significant axis of asymmetry, is robust with respect to this masking procedure. Other subtler anomalies of the full-sky are on the other hand no longer present.Comment: 10 pages, 3 figeres. We performed a similar analysis of arXiv:astro-ph/0511666 by considering the LILC map with a Kp2 sky cut, and find that the presence of a significant axis of asymmetry is robust with respect to this masking procedur
    corecore