700 research outputs found
The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI
A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction
Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells
The promise of PARP-inhibitors(PARPis) in the management of epithelial ovarian cancer(EOC) is tempered by the fact that approximately 50% of patients with homologous recombination (HR)-proficient tumors do not respond well to these agents. Combination of PARPis with agents that inhibit HR may represent an effective strategy to enhance their activity in HR-proficient tumors. Using a bioinformatics approach, we identified that heat shock protein 90 inhibitors(HSP90i) may suppress HR and thus revert HR-proficient to HR-deficient tumors. Analysis of publicly available gene expression data showed that exposure of HR-proficient breast cancer cell lines to HSP90i 17-AAG(17-allylamino-17-demethoxygeldanamycin) downregulated HR, ATM and Fanconi Anemia pathways. In HR-proficient EOC cells, 17-AAG suppressed HR as assessed using the RAD51 foci formation assay and this was further confirmed using the Direct Repeat-GFP reporter assay. Furthermore, 17-AAG downregulated BRCA1 and/or RAD51 protein levels, and induced significantly more γH2AX activation in combination with olaparib compared to olaparib alone. Finally, sublethal concentrations of 17-AAG sensitized HR-proficient EOC lines to olaparib and carboplatin but did not affect sensitivity of the HR-deficient OVCAR8 line arguing that the 17-AAG mediated sensitization is dependent on suppression of HR. These results provide a preclinical rationale for using a combination of olaparib/17-AAG in HR-proficient EOC
Exposures to silica and inducers of xenobiotic metabolism in the rat lung
CYP1A1 metabolizes polycyclic aromatic hydrocarbons (PAHs), such as those in cigarettes, to reactive intermediates which interact with DNA and lead to cancer. Silica is a lung carcinogen. Epidemiology studies of silica and lung cancer are not all positive. A possible explanation for these inconsistencies may be that silica is a modifier of PAH metabolism and, thus, cigarette smoke carcinogenesis. We hypothesize that crystalline silica exposure alters CYP1A1 expression, thereby modifying lung cancer risk. Rats exposed to both crystalline silica and the model PAH, beta-naphthoflavone (NF), a CYP1A1 inducer have significantly decreased CYP1A1 enzymatic activity and CYP1A1 protein expression. In the proximal alveolar region of NF-exposed rats, silica exposure increases markers of alveolar type II cells but decreases proportional CYP1A1 expression in type II cells as detected by immunofluorescence. Our experiments support the hypothesis that silica is a negative modifier of CYP1A1 induction by PAH
Distortions of Subjective Time Perception Within and Across Senses
Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood.
Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations.
Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions
Separate processing of texture and form in the ventral stream : evidence from fMRI and visual agnosia.
Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately, within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that either differed in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested two patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, while the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF, and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features
The prognostic role of post-induction FDG-PET in patients with follicular lymphoma: a subset analysis from the FOLL05 trial of the Fondazione Italiana Linfomi (FIL)
BACKGROUND: [18F]fluorodeoxyglucose-positron emission tomography (PET) is emerging as a strong diagnostic and prognostic tool in follicular lymphoma (FL) patients.
PATIENTS AND METHODS: In a subset analysis of the FOLL05 trial (NCT00774826), we investigated the prognostic role of post-induction PET (PI-PET) scan. Patients were eligible to this study if they had a PI-PET scan carried out within 3 months from the end of induction immunochemotherapy. Progression-free survival (PFS) was the primary study end point.
RESULTS: A total of 202 patients were eligible and analysed for this study. The median age was 55 years (range 33-75). Overall, PI-PET was defined as positive in 49 (24%) patients. Conventional response assessment with CT scan was substantially modified by PET: 15% (22/145) of patients considered as having a complete response (CR) after CT were considered as having partial response (PR) after PI-PET and 53% (30/57) patients considered as having a PR after CT were considered as a CR after PI-PET. With a median follow-up of 34 months, the 3-year PFS was 66% and 35%, respectively, for patients with negative and positive PI-PET (P<0.001). At multivariate analysis, PI-PET (hazard ratio 2.57, 95% confidence interval 1.52-4.34, P<0.001) was independent of conventional response, FLIPI and treatment arm. Also, the prognostic role of PI-PET was maintained within each FLIPI risk group.
CONCLUSIONS: In FL patients, PI-PET substantially modifies response assessment and is strongly predictive for the risk of progression. PET should be considered in further updates of response criteria
Dynamics of generalized PT-symmetric dimers with time-periodic gain–loss
A parity-time (PT)-symmetric system with periodically varying-in-time gain and loss modeled by two coupled Schrödinger equations (dimer) is studied. It is shown that the problem can be reduced to a perturbed pendulum-like equation. This is done by finding two constants of motion. Firstly, a generalized problem using Melnikov-type analysis and topological degree arguments is studied for showing the existence of periodic (libration), shift- periodic (rotation), and chaotic solutions. Then these general results are applied to the PT-symmetric dimer. It is interestingly shown that if a sufficient condition is satisfied, then rotation modes, which do not exist in the dimer with constant gain–loss, will persist. An approximate threshold for PT-broken phase corresponding to the disappearance of bounded solutions is also presented. Numerical study is presented accompanying the analytical results
- …
