1,778 research outputs found

    Relativistic Kinetic Equations for Finite Domains and Freeze-out Problem

    Get PDF
    The relativistic kinetic equations for the two domains separated by the hypersurface with both space- and time-like parts are derived. The particle exchange between the domains separated by the time-like boundaries generates source terms and modifies the collision term of the kinetic equation. The correct hydrodynamic equations for the ``hydro+cascade'' models are obtained and their differences from existing freeze-out models of the hadronic matter are discussed

    Boundary Conditions of the Hydro-Cascade Model and Relativistic Kinetic Equations for Finite Domains

    Full text link
    A detailed analysis of the coupled relativistic kinetic equations for two domains separated by a hypersurface having both space- and time-like parts is presented. Integrating the derived set of transport equations, we obtain the correct system of the hydro+cascade equations to model the relativistic nuclear collision process. Remarkably, the conservation laws on the boundary between domains conserve separately both the incoming and outgoing components of energy, momentum and baryonic charge. Thus, the relativistic kinetic theory generates twice the number of conservation laws compared to traditional hydrodynamics. Our analysis shows that these boundary conditions between domains, the three flux discontinuity, can be satisfied only by a special superposition of two cut-off distribution functions for the ``out'' domain. All these results are applied to the case of the phase transition between quark gluon plasma and hadronic matter. The possible consequences for an improved hydro+cascade description of the relativistic nuclear collisions are discussed. The unique properties of the three flux discontinuity and their effect on the space-time evolution of the transverse expansion are also analyzed. The possible modifications of both transversal radii from pion correlations generated by a correct hydro+cascade approach are discussed.Comment: 12 pages, 2 figure

    Physical mechanism of the (tri)critical point generation

    Full text link
    We discuss some ideas resulting from a phenomenological relation recently declared between the tension of string connecting the static quark-antiquark pair and surface tension of corresponding cylindrical bag. This relation analysis leads to the temperature of vanishing surface tension coefficient of the QGP bags at zero baryonic charge density as T_\sigma = 152.9 +- 4.5 MeV. We develop the view point that this temperature value is not a fortuitous coincidence with the temperature of (partial) chiral symmetry restoration as seen in the lattice QCD simulations. Besides, we argue that T_\sigma defines the QCD (tri)critical endpoint temperature and claim that a negative value of surface tension coefficient recently discovered is not a sole result, but should also exist in ordinary liquids at the supercritical temperatures.Comment: Talk given at the Conference "Critical Point and Onset of Deconfinement (CPOD)" that held on August 23 - 29, 2010, JINR, Dubna, Russia. Contains minimal change

    Hadronic correlations above the chiral/deconfinement transition

    Full text link
    The statistical bootstrap model is critically revised in order to include a medium-dependent resonance width in it. We show that a thermodynamic model with a vanishing width below the Hagedorn temperature T_H and a Hagedorn spectrum-like width above T_H may not only eliminate the divergence of the thermodynamic functions above T_H, but also gives a satisfactory description the lattice quantum chromodynamics (QCD) data on the energy density above the chiral/deconfinement transition as the main result of this contribution. This model allows to explain the absence of heavy resonance contributions in the fit of the experimentally measured particle ratios at SPS and RHIC energies.Comment: 9 pages, 2 figures, contribution to proceedings of NAPP 2003, Dubrovnik, Croatia, 26-31 May, 200
    corecore