273 research outputs found
Limits on Phase Separation for Two-Dimensional Strongly Correlated Electrons
From calculations of the high temperature series for the free energy of the
two-dimensional t-J model we construct series for ratios of the free energy per
hole. The ratios can be extrapolated very accurately to low temperatures and
used to investigate phase separation. Our results confirm that phase separation
occurs only for J/t greater than 1.2. Also, the phase transition into the phase
separated state has Tc of approximately 0.25J for large J/t.Comment: 4 pages, 6 figure
Stripe phases in the two-dimensional Falicov-Kimball model
The observation of charge stripe order in the doped nickelate and cuprate
materials has motivated much theoretical effort to understand the underlying
mechanism of the stripe phase. Numerical studies of the Hubbard model show two
possibilities: (i) stripe order arises from a tendency toward phase separation
and its competition with the long-range Coulomb interaction or (ii) stripe
order inherently arises as a compromise between itinerancy and magnetic
interactions. Here we determine the restricted phase diagrams of the
two-dimensional Falicov-Kimball model and see that it displays rich behavior
illustrating both possibilities in different regions of the phase diagram.Comment: (5 pages, 3 figures
Exact bounds on the ground-state energy of the infinite-U Hubbard model
We give upper and lower bounds for the ground-state energy of the infinite-U
Hubbard model. In two dimensions, using these bounds we are able to rule out
the possibility of phase separation between the undoped-insulating state and an
hole-rich state.Comment: 2 pages, 1 figure, to appear in Phys. Rev.
Estimation of the hydraulic parameters of unsaturated samples by electrical resistivity tomography
In situ and laboratory experiments have shown that electrical resistivity tomography (ERT) is an effective tool to image transient phenomena in soils. However, its application in quantifying soil hydraulic parameters has been limited. In this study, experiments of water inflow in unsaturated soil samples were conducted in an oedometer equipped to perform three-dimensional electrical measurements. Reconstructions of the electrical conductivity at different times confirmed the usefulness of ERT for monitoring the evolution of water content. The tomographic reconstructions were subsequently used in conjunction with a finite-element simulation to infer the water retention curve and the unsaturated hydraulic conductivity. The parameters estimated with ERT agree satisfactorily with those determined using established techniques, hence the proposed approach shows good potential for relatively fast characterisations. Similar experiments could be carried out on site to study the hydraulic behaviour of the entire soil deposi
3D-electrical resistivity tomography monitoring of salt transport in homogeneous and layered soil samples
Monitoring transport of dissolved substances in soil deposits is particularly relevant where safety is concerned, as in the case of geo-environmental barriers. Geophysical methods are very appealing, since they cover a wide domain, localising possible preferential flow paths and providing reliable links between geophysical quantities and hydrological variables. This paper describes a 3D laboratory application of Electrical Resistivity Tomography (ERT) used to monitor solute transport processes. Dissolution and transport tests on both homogeneous and heterogeneous samples were conducted in an instrumented oedometer cell. ERT was used to create maps of electrical conductivity of the monitored domain at different time intervals and to estimate concentration variations within the interstitial fluid. Comparisons with finite element simulations of the transport processes were performed to check the consistency of the results. Tests confirmed that the technique can monitor salt transport, infer the hydro-chemical behaviour of heterogeneous geomaterials and evaluate the performances of clay barrier
Screening, Coulomb pseudopotential, and superconductivity in alkali-doped Fullerenes
We study the static screening in a Hubbard-like model using quantum Monte
Carlo. We find that the random phase approximation is surprisingly accurate
almost up to the Mott transition. We argue that in alkali-doped Fullerenes the
Coulomb pseudopotential is not very much reduced by retardation
effects. Therefore efficient screening is important in reducing
sufficiently to allow for an electron-phonon driven superconductivity. In this
way the Fullerides differ from the conventional picture, where retardation
effects play a major role in reducing the electron-electron repulsion.Comment: 4 pages RevTeX with 2 eps figures, additional material available at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene
Phase separation in the 2D Hubbard model: a fixed-node quantum Monte Carlo study
Fixed-node Green's function Monte Carlo calculations have been performed for
very large 16x6 2D Hubbard lattices, large interaction strengths U=10,20, and
40, and many (15-20) densities between empty and half filling. The nodes were
fixed by a simple Slater-Gutzwiller trial wavefunction. For each value of U we
obtained a sequence of ground-state energies which is consistent with the
possibility of a phase separation close to half-filling, with a hole density in
the hole-rich phase which is a decreasing function of U. The energies suffer,
however, from a fixed-node bias: more accurate nodes are needed to confirm this
picture. Our extensive numerical results and their test against size, shell,
shape and boundary condition effects also suggest that phase separation is
quite a delicate issue, on which simulations based on smaller lattices than
considered here are unlikely to give reliable predictions.Comment: 4 pages, 1 figure; revised version, more data point
Two Superconducting Phases in the d=3 Hubbard Model: Phase Diagram and Specific Heat from Renormalization-Group Calculations
The phase diagram of the d=3 Hubbard model is calculated as a function of
temperature and electron density n_i, in the full range of densities between 0
and 2 electrons per site, using renormalization-group theory. An
antiferromagnetic phase occurs at lower temperatures, at and near the
half-filling density of = 1. The antiferromagnetic phase is unstable to
hole or electron doping of at most 15%, yielding to two distinct "tau" phases:
for large coupling U/t, one such phase occurs between 30-35% hole or electron
doping, and for small to intermediate coupling U/t another such phase occurs
between 10-18% doping. Both tau phases are distinguished by non-zero hole or
electron hopping expectation values at all length scales. Under further doping,
the tau phases yield to hole- or electron-rich disordered phases. We have
calculated the specific heat over the entire phase diagram. The low-temperature
specific heat of the weak-coupling tau phase shows a BCS-type exponential
decay, indicating a gap in the excitation spectrum, and a cusp singularity at
the phase boundary. The strong-coupling tau phase, on the other hand, has
characteristics of BEC-type superconductivity, including a critical exponent
alpha approximately equal to -1, and an additional peak in the specific heat
above the transition temperature indicating pair formation. In the limit of
large Coulomb repulsion, the phase diagram of the tJ model is recovered.Comment: 16 pages, 10 figures; typos in Fig. 2 correcte
Phase separation and enhanced charge-spin coupling near magnetic transitions
The generic changes of the electronic compressibility in systems which show
magnetic instabilities is studied. It is shown that, when going into the
ordered phase, the compressibility is reduced by an amount comparable to the
its original value, making charge instabilities also possible. We discuss,
within this framework, the tendency towards phase separation of the double
exchange systems, the pyrochlores, and other magnetic materials
Spatially homogeneous ground state of the two-dimensional Hubbard model
We investigate the stability with respect to phase separation or charge
density-wave formation of the two-dimensional Hubbard model for various values
of the local Coulomb repulsion and electron densities using Green-function
Monte Carlo techniques. The well known sign problem is particularly serious in
the relevant region of small hole doping. We show that the difference in
accuracy for different doping makes it very difficult to probe the phase
separation instability using only energy calculations, even in the
weak-coupling limit () where reliable results are available. By contrast,
the knowledge of the charge correlation functions allows us to provide clear
evidence of a spatially homogeneous ground state up to .Comment: 7 pages and 5 figures. Phys. Rev. B, to appear 200
- …
