1,088 research outputs found
New symmetry current for massive spin-3/2 fields
We present several new results which will be of value to theorists working
with massive spin-3/2 vector-spinor fields as found, for example, in low and
intermediate energy hadron physics and also linearized supergravity. The
general lagrangian and propagator for a vector-spinor field in d-dimensions is
given. It is shown that the observables of the theory are invariant under a
novel continuous symmetry group which is also extended to an algebra. A new
technique is developed for exploring the consequences of the symmetry and a
previously unknown conserved vector current and charge are found. The current
leads to new interactions involving spin-3/2 particles and may have important
experimental consequences.Comment: 9 pages, references updated and minor change
A computerized Langmuir probe system
For low pressure plasmas it is important to record entire single or double Langmuir probe characteristics accurately. For plasmas with a depleted high energy tail, the accuracy of the recorded ion current plays a critical role in determining the electron temperature. Even for high density Maxwellian distributions, it is necessary to accurately model the ion current to obtain the correct electron density. Since the electron and ion current saturation values are, at best, orders of magnitude apart, a single current sensing resistor cannot provide the required resolution to accurately record these values. We present an automated, personal computer based data acquisition system for the determination of fundamental plasma properties in low pressure plasmas. The system is designed for single and double Langmuir probes, whose characteristics can be recorded over a bias voltage range of ±70 V with 12 bit resolution. The current flowing through the probes can be recorded within the range of 5 nA–100 mA. The use of a transimpedance amplifier for current sensing eliminates the requirement for traditional current sensing resistors and hence the need to correct the raw data. The large current recording range is realized through the use of a real time gain switching system in the negative feedback loop of the transimpedance amplifier
The theoretical and practical determination of clinical cut-offs for the British Sign Language versions of PHQ-9 and GAD-7.
BACKGROUND: The PHQ-9 and the GAD-7 assess depression and anxiety respectively. There are standardised, reliability-tested versions in BSL (British Sign Language) that are used with Deaf users of the IAPT service. The aim of this study is to determine their appropriate clinical cut-offs when used with Deaf people who sign and to examine the operating characteristics for PHQ-9 BSL and GAD-7 BSL with a clinical Deaf population. METHODS: Two datasets were compared: (i) dataset (n = 502) from a specialist IAPT service for Deaf people; and (ii) dataset (n = 85) from our existing study of Deaf people who self-reported having no mental health difficulties. Parameter estimates, with the precision of AUC value, sensitivity, specificity, positive predicted value (ppv) and negative predicted value (npv), were carried out to provide the details of the clinical cut-offs. Three statistical choices were included: Maximising (Youden: maximising sensitivity + specificity), Equalising (Sensitivity = Specificity) and Prioritising treatment (False Negative twice as bad as False Positive). Standard measures (as defined by IAPT) were applied to examine caseness, recovery, reliable change and reliable recovery for the first dataset. RESULTS: The clinical cut-offs for PHQ-9 BSL and GAD-7 BSL are 8 and 6 respectively. This compares with the original English version cut-offs in the hearing population of 10 and 8 respectively. The three different statistical choices for calculating clinical cut-offs all showed a lower clinical cut-off for the Deaf population with respect to the PHQ-9 BSL and GAD-7 BSL with the exception of the Maximising criteria when used with the PHQ-9 BSL. Applying the new clinical cut-offs, the percentage of Deaf BSL IAPT service users showing reliable recovery is 54.0 % compared to 63.7 % using the cut-off scores used for English speaking hearing people. These compare favourably with national IAPT data for the general population. CONCLUSIONS: The correct clinical cut-offs for the PHQ-9 BSL and GAD-7 BSL enable meaningful measures of clinical effectiveness and facilitate appropriate access to treatment when required
Foraging in the limpet Patella vulgata: The influence of rock slope on the timing of activity
Preliminary observations of limpet activity at Lough Hyne, in south-west Ireland, showed that individuals on steep slopes were primarily active at night, when emersed; while those on near-horizontal rocks were often active during daytime submersion. Observations over an 11 d period of limpet populations on a near-vertical and a near-horizontal site, only 45 m apart, confirmed that animals on the near-vertical site were active on nocturnal low tides, whilst those on the near-horizontal site were active on daytime high waters. A short-term survey at ten sites, which had limpets on both extremes of slope (i.e. either near-vertical or near-horizontal), showed that limpets on near-horizontal surfaces were, on average, more active at daytime high waters than those on near-vertical faces. In 1996 and 1997 surveys of activity at daytime high, and nocturnal low waters were conducted at sites (14 - 15) with varying rock slopes (~3 - 87°). In all cases, limpets on more steep slopes were active at nocturnal emersion whilst animals on more gentle slopes were active on daytime submersion periods. In most cases these trends were significant and explained between 22 - 40% and 37 - 44% of the variation in activity with site in 1996 and 1997 respectively. Analysis of the head orientation of limpets on their home scars showed that animals orientated in a down shore direction at all sites (1997 data) suggesting that limpets do perceive and respond to slope. Whilst slope does appear to influence the timing of limpets' activity (and especially on very steep or gently sloping sites) it does not account for a large degree of the variation in activity and, on sites with slopes between 30 and 60°, is likely to work in combination with other factors.published_or_final_versio
Observer Dependent Horizon Temperatures: a Coordinate-Free Formulation of Hawking Radiation as Tunneling
We reformulate the Hamilton-Jacobi tunneling method for calculating Hawking
radiation in static, spherically-symmetric spacetimes by explicitly
incorporating a preferred family of frames. These frames correspond to a family
of observers tied to a locally static timelike Killing vector of the spacetime.
This formulation separates the role of the coordinates from the choice of
vacuum and thus provides a coordinate-independent formulation of the tunneling
method. In addition, it clarifies the nature of certain constants and their
relation to these preferred observers in the calculation of horizon
temperatures. We first use this formalism to obtain the expected temperature
for a static observer at finite radius in the Schwarzschild spacetime. We then
apply this formalism to the Schwarzschild-de Sitter spacetime, where there is
no static observer with 4-velocity equal to the static timelike Killing vector.
It is shown that a preferred static observer, one whose trajectory is geodesic,
measures the lowest temperature from each horizon. Furthermore, this observer
measures horizon temperatures corresponding to the well-known Bousso-Hawking
normalization.Comment: 11 pages, 1 2-part figure, references added, appendix added,
discussion streamline
Design of and initial results from a highly instrumented reactor for atmospheric chemistry (HIRAC)
International audienceThe design of a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) is described and initial results obtained from HIRAC are presented. The ability of HIRAC to perform in-situ laser-induced fluorescence detection of OH and HO2 radicals with the Fluorescence Assay by Gas Expansion (FAGE) technique establishes it as internationally unique for a chamber of its size and pressure/temperature variable capabilities. In addition to the FAGE technique, HIRAC features a suite of analytical instrumentation, including: a multipass FTIR system; a conventional gas chromatography (GC) instrument and a GC instrument for formaldehyde detection; and NO/NO2, CO, O3, and H2O vapour analysers. Ray tracing simulations and measurements of the blacklamp flux have been utilized to develop a detailed model of the radiation field within HIRAC. Comparisons between the analysers and the FTIR coupled to HIRAC have been performed, and HIRAC has also been used to investigate pressure dependent kinetics of the chlorine atom reaction with ethene and the reaction of O3 and t-2-butene. The results obtained are in good agreement with literature recommendations and Master Chemical Mechanism predictions. HIRAC thereby offers a highly instrumented platform with the potential for: (1) high precision kinetics investigations over a range of atmospheric conditions; (2) detailed mechanism development, significantly enhanced according to its capability for measuring radicals; and (3) field instrument intercomparison, calibration, development, and investigations of instrument response under a range of atmospheric conditions
All-optical ion generation for ion trap loading
We have investigated the all-optical generation of ions by photo-ionisation
of atoms generated by pulsed laser ablation. A direct comparison between a
resistively heated oven source and pulsed laser ablation is reported. Pulsed
laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium
flux, corresponding to atomic beams produced with oven temperatures greater
than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to
produce a thermal load more than one order of magnitude smaller than the oven
source. The atomic beam distributions obey Maxwell-Boltzmann statistics with
most probable speeds corresponding to temperatures greater than 2200 K. Below a
threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is
composed exclusively of ground state atoms. For higher fluences ions and
excited atoms are generated.Comment: 7 pages, 9 figure
How often does the Unruh-DeWitt detector click? Regularisation by a spatial profile
We analyse within first-order perturbation theory the instantaneous
transition rate of an accelerated Unruh-DeWitt particle detector whose coupling
to a massless scalar field on four-dimensional Minkowski space is regularised
by a spatial profile. For the Lorentzian profile introduced by Schlicht, the
zero size limit is computed explicitly and expressed as a manifestly finite
integral formula that no longer involves regulators or limits. The same
transition rate is obtained for an arbitrary profile of compact support under a
modified definition of spatial smearing. Consequences for the asymptotic
behaviour of the transition rate are discussed. A number of stationary and
nonstationary trajectories are analysed, recovering in particular the Planckian
spectrum for uniform acceleration.Comment: 30 pages, 1 figure. v3: Added references and minor clarification
- …
