913 research outputs found
Therapy of pancreatic cancer via an EphA2 receptor-targeted delivery of gemcitabine.
First line treatment for pancreatic cancer consists of surgical resection, if possible, and a subsequent course of chemotherapy using the nucleoside analogue gemcitabine. In some patients, an active transport mechanism allows gemcitabine to enter efficiently into the tumor cells, resulting in a significant clinical benefit. However, in most patients, low expression of gemcitabine transporters limits the efficacy of the drug to marginal levels, and patients need frequent administration of the drug at high doses, significantly increasing systemic drug toxicity. In this article we focus on a novel targeted delivery approach for gemcitabine consisting of conjugating the drug with an EphA2 targeting agent. We show that the EphA2 receptor is highly expressed in pancreatic cancers, and accordingly, the drug-conjugate is more effective than gemcitabine alone in targeting pancreatic tumors. Our preliminary observations suggest that this approach may provide a general benefit to pancreatic cancer patients and offers a comprehensive strategy for enhancing delivery of diverse therapeutic agents to a wide range of cancers overexpressing EphA2, thereby potentially reducing toxicity while enhancing therapeutic efficacy
Polymer Induced Bundling of F-actin and the Depletion Force
The inert polymer polyethylene glycol (PEG) induces a "bundling" phenomenon
in F-actin solutions when its concentration exceeds a critical onset value C_o.
Over a limited range of PEG molecular weight and ionic strength, C_o can be
expressed as a function of these two variables. The process is reversible, but
hysteresis is also observed in the dissolution of the bundles, with ionic
strength having a large influence. Additional actin filaments are able to join
previously formed bundles. Little, if any, polymer is associated with the
bundle structure.
Continuum estimates of the Asakura-Oosawa depletion force, Coulomb repulsion,
and van der Waals potential are combined for a partial explanation of the
bundling effect and hysteresis. Conjectures are presented concerning the
apparent limit in bundle size
Understanding depletion forces beyond entropy
The effective interaction energy of a colloidal sphere in a suspension
containing small amounts of non-ionic polymers and a flat glass surface has
been measured and calculated using total internal reflection microscopy (TIRM)
and a novel approach within density functional theory (DFT), respectively.
Quantitative agreement between experiment and theory demonstrates that the
resulting repulsive part of the depletion forces cannot be interpreted entirely
in terms of entropic arguments but that particularly at small distances
( 100 nm) attractive dispersion forces have to be taken into account
Small molecule inhibitors of Late SV40 Factor (LSF) abrogate hepatocellular carcinoma (HCC): evaluation using an endogenous HCC model
Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.The present study was supported in part by grants from The James S. McDonnell Foundation, National Cancer Institute Grant R01 CA138540-01A1 (DS), National Institutes of Health Grant R01 CA134721 (PBF), the Samuel Waxman Cancer Research Foundation (SWCRF) (DS and PBF), National Institutes of Health Grants R01 GM078240 and P50 GM67041 (SES), the Johnson and Johnson Clinical Innovation Award (UH), and the Boston University Ignition Award (UH). JLSW was supported by Alnylam Pharmaceuticals, Inc. DS is the Harrison Endowed Scholar in Cancer Research and Blick scholar. PBF holds the Thelma Newmeyer Corman Chair in Cancer Research. The authors acknowledge Dr. Lauren E. Brown (Dept. Chemistry, Boston University) for the synthesis of FQI1 and FQI2, and Lucy Flynn (Dept. Biology, Boston University) for initially identifying G2/M effects caused by FQI1. (James S. McDonnell Foundation; R01 CA138540-01A1 - National Cancer Institute; R01 CA134721 - National Institutes of Health; R01 GM078240 - National Institutes of Health; P50 GM67041 - National Institutes of Health; Samuel Waxman Cancer Research Foundation (SWCRF); Johnson and Johnson Clinical Innovation Award; Boston University Ignition Award; Alnylam Pharmaceuticals, Inc.)Published versio
Polymer depletion interaction between two parallel repulsive walls
The depletion interaction between two parallel repulsive walls confining a
dilute solution of long and flexible polymer chains is studied by
field-theoretic methods. Special attention is paid to self-avoidance between
chain monomers relevant for polymers in a good solvent. Our direct approach
avoids the mapping of the actual polymer chains on effective hard or soft
spheres. We compare our results with recent Monte Carlo simulations [A. Milchev
and K. Binder, Eur. Phys. J. B 3, 477 (1998)] and with experimental results for
the depletion interaction between a spherical colloidal particle and a planar
wall in a dilute solution of nonionic polymers [D. Rudhardt, C. Bechinger, and
P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)].Comment: 17 pages, 3 figures. Final version as publishe
Objective methods of monitoring usage of orthotic devices for the extremities: a systematic review
Orthoses are commonly prescribed to relieve symptoms for musculoskeletal and neurological conditions; however, patients stop wearing orthoses as recommended for many reasons. When considering the effectiveness of orthoses, there needs to be an objective way to monitor whether participants wear the orthosis as instructed, because if this is not followed, the orthoses will not work as intended. This review aimed to identify, summarise, and compare objective methods used to measure compliance with orthoses applied to the extremities. Databases (Scopus, Web of Science, Embase, CINAHL, and MEDLINE) were searched for eligible studies. Twenty-three studies were accepted in the final review, including five studies that employed upper limb orthoses, two that employed hip orthoses, and fifteen that employed lower limb orthoses. To measure compliance objectively, studies utilised temperature sensors, pressure sensors, accelerometers, a step counter, or a combination of sensors. All sensor types have their own advantages and disadvantages and should be chosen based on study-specific parameters. Sensor-derived monitoring provides quantitative, objective data that are beneficial in both clinical and research settings. The ideal solution to monitoring compliance would consist of both objective and user-reported aspects that, in combination, would provide an all-encompassing picture of the orthotic treatment prescribed
A First-Generation Multi-Functional Cytokine for Simultaneous Optical Tracking and Tumor Therapy
Creating new molecules that simultaneously enhance tumor cell killing and permit diagnostic tracking is vital to overcoming the limitations rendering current therapeutic regimens for terminal cancers ineffective. Accordingly, we investigated the efficacy of an innovative new multi-functional targeted anti-cancer molecule, SM7L, using models of the lethal brain tumor Glioblastoma multiforme (GBM). Designed using predictive computer modeling, SM7L incorporates the therapeutic activity of the promising anti-tumor cytokine MDA-7/IL-24, an enhanced secretory domain, and diagnostic domain for non-invasive tracking. In vitro assays revealed the diagnostic domain of SM7L produced robust photon emission, while the therapeutic domain showed marked anti-tumor efficacy and significant modulation of p38MAPK and ERK pathways. In vivo, the unique multi-functional nature of SM7L allowed simultaneous real-time monitoring of both SM7L delivery and anti-tumor efficacy. Utilizing engineered stem cells as novel delivery vehicles for SM7L therapy (SC-SM7L), we demonstrate that SC-SM7L significantly improved pharmacokinetics and attenuated progression of established peripheral and intracranial human GBM xenografts. Furthermore, SC-SM7L anti-tumor efficacy was augmented in vitro and in vivo by concurrent activation of caspase-mediated apoptosis induced by adjuvant SC-mediated S-TRAIL delivery. Collectively, these studies define a promising new approach to treating highly aggressive cancers, including GBM, using the optimized therapeutic molecule SM7L
Decreased olfactory discrimination is associated with impulsivity in healthy volunteers
In clinical populations, olfactory abilities parallel executive function, implicating shared
neuroanatomical substrates within the ventral prefrontal cortex. In healthy individuals, the relationship
between olfaction and personality traits or certain cognitive and behavioural characteristics remains
unexplored. We therefore tested if olfactory function is associated with trait and behavioural impulsivity
in nonclinical individuals. Eighty-three healthy volunteers (50 females) underwent quantitative
assessment of olfactory function (odour detection threshold, discrimination, and identifcation). Each
participant was rated for trait impulsivity index using the Barratt Impulsiveness Scale and performed
a battery of tasks to assess behavioural impulsivity (Stop Signal Task, SST; Information Sampling
Task, IST; Delay Discounting). Lower odour discrimination predicted high ratings in non-planning
impulsivity (Barratt Non-Planning impulsivity subscale); both, lower odour discrimination and detection
threshold predicted low inhibitory control (SST; increased motor impulsivity). These fndings extend
clinical observations to support the hypothesis that defcits in olfactory ability are linked to impulsive
tendencies within the healthy population. In particular, the relationship between olfactory abilities and
behavioural inhibitory control (in the SST) reinforces evidence for functional overlap between neural
networks involved in both processes. These fndings may usefully inform the stratifcation of people at
risk of impulse-control-related problems and support planning early clinical interventions
Association of plasma and cortical beta-amyloid is modulated by APOE ε4 status.
Background: APOE ε4’s role as a modulator of the relationship between soluble plasma beta-amyloid (Aβ) and fibrillar brain Aβ measured by Pittsburgh Compound-B positron emission tomography ([11C]PiB PET) has not been assessed. Methods: Ninety-six Alzheimer’s Disease Neuroimaging Initiative participants with [11C]PiB scans and plasma Aβ1-40 and Aβ1-42 measurements at time of scan were included. Regional and voxel-wise analyses of [11C]PiB data were used to determine the influence of APOE ε4 on association of plasma Aβ1-40, Aβ1-42, and Aβ1-40/Aβ1-42 with [11C]PiB uptake. Results: In APOE ε4− but not ε4+ participants, positive relationships between plasma Aβ1-40/Aβ1-42 and [11C]PiB uptake were observed. Modeling the interaction of APOE and plasma Aβ1-40/Aβ1-42 improved the explained variance in [11C]PiB binding compared to using APOE and plasma Aβ1-40/Aβ1-42 as separate terms. Conclusions: The results suggest that plasma Aβ is a potential Alzheimer’s disease biomarker and highlight the importance of genetic variation in interpretation of plasma Aβ levels
- …
