11,799 research outputs found
A study of the angular resolution of the ALICE HMPID CsI-RICH detector
In this report is presented an investigation of the Cherenkov angleresolution achievable in the High MomentumParticle Identification (HMPID) CsI-RICH detector of ALICE.Two angle reconstruction procedures are described and the single contributions affecting the resolution are evaluated throughthe analytical treatment and the Monte Carlo simulation program{\em RICHSIM}. The dependence on various detector parameters, namely the radiator thickness, the proximity gap thickness and the chamber gain, has been studied carrying out beam tests of CsI-RICH prototypes.A ring resolution of about 2 mrad has been achieved,for =1 particles, in the optimal detector configuration (10 mm CF radiator thickness, 103 mm proximity gap and 40 ADC channels single electron averagepulse height)
Majorana and the theoretical problem of photon-electron scattering
Relevant contributions by Majorana regarding Compton scattering off free or
bound electrons are considered in detail, where a (full quantum) generalization
of the Kramers-Heisenberg dispersion formula is derived. The role of
intermediate electronic states is appropriately pointed out in recovering the
standard Klein-Nishina formula (for free electron scattering) by making
recourse to a limpid physical scheme alternative to the (then unknown) Feynman
diagram approach. For bound electron scattering, a quantitative description of
the broadening of the Compton line was obtained for the first time by
introducing a finite mean life for the excited state of the electron system.
Finally, a generalization aimed to describe Compton scattering assisted by a
non-vanishing applied magnetic field is as well considered, revealing its
relevance for present day research.Comment: latex, amsart, 10 pages, 1 figur
Interpretation of AMS-02 electrons and positrons data
We perform a combined analysis of the recent AMS-02 data on electrons,
positrons, electrons plus positrons and positron fraction, in a self-consistent
framework where we realize a theoretical modeling of all the astrophysical
components that can contribute to the observed fluxes in the whole energy
range. The primary electron contribution is modeled through the sum of an
average flux from distant sources and the fluxes from the local supernova
remnants in the Green catalog. The secondary electron and positron fluxes
originate from interactions on the interstellar medium of primary cosmic rays,
for which we derive a novel determination by using AMS-02 proton and helium
data. Primary positrons and electrons from pulsar wind nebulae in the ATNF
catalog are included and studied in terms of their most significant (while
loosely known) properties and under different assumptions (average contribution
from the whole catalog, single dominant pulsar, a few dominant pulsars). We
obtain a remarkable agreement between our various modeling and the AMS-02 data
for all types of analysis, demonstrating that the whole AMS-02 leptonic data
admit a self-consistent interpretation in terms of astrophysical contributions.Comment: 33 pages, 26 figures and 4 tables, v2: accepted for publication in
JCAP, minor changes relative to v
Breaking the core-envelope symmetry in p-mode pulsating stars
It has been shown that there is a potential ambiguity in the asteroseismic
determination of the location of internal structures in a pulsating star. We
show how, in the case of high-order non-radial acoustic modes, it is possible
to remove this ambiguity by considering modes of different degree. To support
our conclusions we have investigated the seismic signatures of sharp density
variations in the structure of quasi-homogeneous models.Comment: 3 pages, 3 figures, accepted for publication in Astronomy and
Astrophysic
First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype
We have built a RICH detector prototype consisting of a liquid C6F14 radiator
and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having
an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid
radiator in order to detect the beam particles, whereas the other five have
been positioned around the central one at a distance to collect the Cherenkov
photons. The upstream electrode of each of the TGEM stacks has been coated with
a 0.4 micron thick CsI layer.
In this paper, we will present the results from a series of laboratory tests
with this prototype carried out using UV light, 6 keV photons from 55Fe and
electrons from 90Sr as well as recent results of tests with a beam of charged
pions where for the first time Cherenkov Ring images have been successfully
recorded with TGEM photodetectors. The achieved results prove the feasibility
of building a large area Cherenkov detector consisting of a matrix of TGEMs.Comment: Presented at the International Conference NDIP-11, Lyon,July201
- …
