384 research outputs found
Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes
How do biogeographically different provinces arise in response to oceanic barriers to dispersal? Here, we analyse how traits related to the pelagic dispersal and adult biology of 985 tropical reef fish species correlate with their establishing populations on both sides of two Atlantic marine barriers: the Mid-Atlantic Barrier (MAB) and the Amazon-Orinoco Plume (AOP). Generalized linear mixed-effects models indicate that predictors for successful barrier crossing are the ability to raft with flotsam for the deep-water MAB, non-reef habitat usage for the freshwater and sediment-rich AOP, and large adult-size and large latitudinal-range for both barriers. Variation in larval-development mode, often thought to be broadly related to larval-dispersal potential, is not a significant predictor in either case. Many more species of greater taxonomic diversity cross the AOP than the MAB. Rafters readily cross both barriers but represent a much smaller proportion of AOP crossers than MAB crossers. Successful establishment after crossing both barriers may be facilitated by broad environmental tolerance associated with large body size and wide latitudinal-range. These results highlight the need to look beyond larval-dispersal potential and assess adult-biology traits when assessing determinants of successful movements across marine barriers.International Macquarie University; Australian Research Council; Smithsonian Tropical Research Institute; National Geographic Society [7937-05]; CNPq; NSF [DEB-0072909]; University of Californi
Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs
When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought
Evidence of local conformational fluctuations and changes in bacteriorhodopsin, dependent on lipids, detergents and trimeric structure, as studied by 13C NMR
AbstractWe examined how the local conformation and dynamics of [3-13C]Ala-labeled bacteriorhodopsin (bR) are altered as viewed from 13C NMR spectra when the natural membrane lipids are partly or completely replaced with detergents. It turned out that the major conformational features of bR, the αII-helices, are generally unchanged in the delipidated or solubilized preparations. Upon partial delipidation or detergent solubilization, however, a significant conformational change occurs, ascribed to local conversion of αII→αI-helix (one Ala residue involved), evident from the upfield displacement of the transmembrane helical peak from 16.4 ppm to 14.5 ppm, conformational change (one or two Ala residues) within αII-helices from 16.4 to 16.0 ppm, and acquired flexibility in the loop region (especially at the F–G loop) as manifested from suppressed peak-intensities in cross-polarization magic angle spinning (CP-MAS) NMR spectra. On the other hand, formation of monomers as solubilized by Triton X-100, Triton N-101 and n-dodecylmaltoside is characterized by the presence of a peak at 15.5 ppm and a shifted absorption maximum (550 nm). The size of micelles under the first two conditions was small enough to yield 13C NMR signals observable by a solution NMR spectrometer, although 13C CP-MAS NMR signals were also visible from a fraction of large-sized micelles. We found that the 16.9 ppm peak (three Ala residues involved), visible by CP-MAS NMR, was displaced upfield when Schiff base was removed by solubilization with sodium dodecyl sulfate, consistent with our previous finding of bleaching to yield bacterioopsin
Atlantic reef fish biogeography and evolution
Copyright © 2007 The Authors.Journal compilation © 2007 Blackwell Publishing Ltd.AIM: To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. RESULTS: Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non-terrestrial) inter-regional barriers (mid-Atlantic, Amazon, and Benguela) clearly act as ‘filters’ by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism for much of the recent diversification of reef fishes in the Atlantic
Depleted marine fish stocks and ecosystem-based management: on the road to recovery, we need to be precautionary
Depleted marine fish stocks and ecosystem-based management: on the road to recovery, we need to be precautionary. -ICES Journal of Marine Science, doi:10.1093/icesjms/fsq158. Precautionary management for fish stocks in need of recovery requires that likely stock increases can be distinguished from model artefacts and that the uncertainty of stock status can be handled. Yet, ICES stock assessments are predominantly deterministic and many EC management plans are designed for deterministic advice. Using the eastern Baltic cod (Gadus morhua) stock as an example, we show how deterministic scientific advice can lead to illusive certainty of a rapid stock recovery and management decisions taken in unawareness of large uncertainties in stock status. By (i) performing sensitivity analyses of key assessment model assumptions, (ii) quantifying the uncertainty of the estimates due to data uncertainty, and (iii) developing alternative stock and ecosystem indicators, we demonstrate that estimates of recent fishing mortality and recruitment of this stock were highly uncertain and show that these uncertainties are crucial when combined with management plans based on fixed reference points of fishing mortality. We therefore call for fisheries management that does not neglect uncertainty. To this end, we outline a four-step approach to handle uncertainty of stock status in advice and management. We argue that it is time to use these four steps towards an ecosystem-based approach to fisheries management
Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex
BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the excitability of neurons within the primary motor cortex (M1). Research shows that anodal-tDCS applied over the non-dominant M1 (i.e. unilateral stimulation) improves motor function of the non-dominant hand. Similarly, previous studies also show that applying cathodal tDCS over the dominant M1 improves motor function of the non-dominant hand, presumably by reducing interhemispheric inhibition. In the present study, one condition involved anodal-tDCS over the non-dominant M1 (unilateral stimulation) whilst a second condition involved applying cathodal-tDCS over the dominant M1 and anodal-tDCS over non-dominant M1 (bilateral stimulation) to determine if unilateral or bilateral stimulation differentially modulates motor function of the non-dominant hand. Using a randomized, cross-over design, 11 right-handed participants underwent three stimulation conditions: 1) unilateral stimulation, that involved anodal-tDCS applied over the non-dominant M1, 2) bilateral stimulation, whereby anodal-tDCS was applied over the non-dominant M1, and cathodal-tDCS over the dominant M1, and 3) sham stimulation. Transcranial magnetic stimulation (TMS) was performed before, immediately after, 30 and 60 minutes after stimulation to elucidate the neural mechanisms underlying any potential after-effects on motor performance. Motor function was evaluated by the Purdue pegboard test. RESULTS: There were significant improvements in motor function following unilateral and bilateral stimulation when compared to sham stimulation at all-time points (all P 0.05). Furthermore, changes in corticomotor plasticity were not related to changes in motor performance. CONCLUSION: These results indicate that tDCS induced behavioural changes in the non-dominant hand as a consequence of mechanisms associated with use-dependant cortical plasticity that is independent of the electrode arrangement
Latitudinal gradients in Atlantic reef fish communities: trophic structure and spatial use patterns
Trophic strategies and spatial use habits were investigated in reef fish communities. The results supported the hypothesis of differential use of food resources among tropical and higher latitude reef fishes, i.e. the number of species and relative abundance of fishes relying on relatively low-quality food significantly decreased from tropical to temperate latitudes. The species : genus ratio of low-quality food consumers increased toward the tropics, and was higher than the overall ratio considering all fishes in the assemblages. This supports the view that higher speciation rates occurred among this guild of fishes in warm waters. It was also demonstrated that density of herbivorous fishes (the dominant group relying on low-quality food resources) in the western Atlantic decreased from tropical to temperate latitudes. Spatial use and mobility varied with latitude and consequently reef type and complexity. Fishes with small-size home ranges predominated on tropical coral reefs. # 2004 The Fisheries Society of the British Isle
Evolutionary history, biogeography, and a new species of Sphoeroides (Tetraodontiformes: Tetraodontidae): how the major biogeographic barriers of the Atlantic Ocean shaped the evolution of a pufferfish genus
ABSTRACT: Tetraodontidae is the most speciose family of Tetraodontiformes and is represented by fish popularly known as pufferfishes. They are characterized by modified jaws with four dental plates and the ability to inflate their bodies. Tetraodontids are distributed throughout the world and have a wide range of habitat use. One of its genera, Sphoeroides, shows a biogeographical pattern, with 19 of its 21 species restricted to coastal regions of the Americas. Although represented in large-scale phylogenies, the evolutionary history and biogeography of the genus have not been explored in detail. The present study aims to understand the historical and biogeographic processes that shaped the evolutionary history of Sphoeroides. Including samples from all biogeographic regions of its occurrence, we reconstruct a phylogenetic/biogeographic history hypothesis for the genus. Our results show that Sphoeroides is a paraphyletic group comprising Colomesus; indicate a central role of the biogeographic barriers of the Atlantic Ocean in the diversification of the genus; and identified a cryptic species in Brazilian waters, formally known as S. spengleri, described here through integrative taxonomy. We also propose nomenclatural changes given the position of Colomesus deeply nested within Sphoeroides.info:eu-repo/semantics/publishedVersio
Time-resolved investigation of nanometer scale deformations induced by a high flux x-ray beam
We present results of a time-resolved pump-probe experiment where a Si sample was exposed to an intense 15 keV beam and its surface monitored by measuring the wavefront deformation of a reflected optical laser probe beam. By reconstructing and back propagating the wavefront, the deformed surface can be retrieved for each time step. The dynamics of the heat bump, build-up and relaxation, is followed with a spatial resolution in the nanometer range. The results are interpreted taking into account results of finite element method simulations. Due to its robustness and simplicity this method should find further developments at new x-ray light sources (FEL) or be used to gain understanding on thermo-dynamical behavior of highly excited materials. (C) 2011 Optical Society of Americ
- …
