827 research outputs found
Electron energy spectrum and magnetic interactions in high-T(sub c) superconductors
The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T sub N1 and T sub N2. The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T sub N2 reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T sub N1 and T sub N2 depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J sub ij parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors
Crystal chemical and quantum chemical studies of Ba(Sr)-Nb oxide compounds
The information available on the BaO(SrO)-NbO-NbO2 system with the niobium atom in the lower oxidation degree is very limited. Very few compounds have been found previously in this system. They are BaNbO3, SrxNbO3(0,7=x=1), Ba2Nb2O9, SrNb8O14; and some suggestions on the BaNb8O14 existence have been made also. At the same time Nb-based oxide compounds could be quite interesting in the search of new noncopper high T(sub c) superconductors Researchers studied Ba(Sr) NbxO2x-2 and Ba2(Sr2)-NbxO2x-1 compositions in the phase diagram of BaO(SrO)-NbO-NbO2 system. The synthesis of the materials was carried out in vacuum at the temperatures of 1000 to 1500 C. Barium carbonate and niobium pentoxide were used as initial components. X-ray analysis was carried out
Possibility to realize spin-orbit-induced correlated physics in iridium fluorides
Recent theoretical predictions of "unprecedented proximity" of the electronic
ground state of iridium fluorides to the SU(2) symmetric
limit, relevant for superconductivity in iridates, motivated us to investigate
their crystal and electronic structure. To this aim, we performed
high-resolution x-ray powder diffraction, Ir L-edge resonant inelastic
x-ray scattering, and quantum chemical calculations on Rb[IrF] and
other iridium fluorides. Our results are consistent with the Mott insulating
scenario predicted by Birol and Haule [Phys. Rev. Lett. 114, 096403 (2015)],
but we observe a sizable deviation of the state from the
SU(2) symmetric limit. Interactions beyond the first coordination shell of
iridium are negligible, hence the iridium fluorides do not show any magnetic
ordering down to at least 20 K. A larger spin-orbit coupling in iridium
fluorides compared to oxides is ascribed to a reduction of the degree of
covalency, with consequences on the possibility to realize spin-orbit-induced
strongly correlated physics in iridium fluorides
Strong short-range magnetic order in a frustrated FCC lattice and its possible role in the iron structural transformation
We investigate magnetic properties of a frustrated Heisenberg antiferromagnet
with a face-centered cubic (FCC) lattice and exchange interactions between the
nearest- and next-nearest neighbours, J1 and J2. In a collinear phase with the
wave vector Q = (pi,pi,pi) the equations of the self-consistent spin-wave
theory for the sublattice magnetization and the average short range order
parameter are obtained and numerically solved. The dependence of the Neel
temperature T_N on the ratio J2/J1 is obtained. It is shown, that at strong
enough frustration there is a wide temperature region above T_N with strong
short range magnetic order. Application of this result to description of
structural phase transition between alpha and gamma-phase of Fe is considered
A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system
We present a tight-binding potential for transition metals, carbon, and
transition metal carbides, which has been optimized through a systematic
fitting procedure. A minimal basis, including the s, p electrons of carbon and
the d electrons of the transition metal, is used to obtain a transferable
tight-binding model of the carbon-carbon, metal-metal and metal-carbon
interactions applicable to binary systems. The Ni-C system is more specifically
discussed. The successful validation of the potential for different atomic
configurations indicates a good transferability of the model and makes it a
good choice for atomistic simulations sampling a large configuration space.
This approach appears to be very efficient to describe interactions in systems
containing carbon and transition metal elements
Biochemistry
www.elsevier.com/locate/yabio SigniWcant enhancement of Xuorescence on hybridization of a molecular beacon to a target DNA in the presence of a site-speciWc DNA nickas
- …
