33,979 research outputs found

    High pressure gas filter system Patent

    Get PDF
    Developing high pressure gas purification and filtration system for use in test operations of space vehicle

    High pressure helium purifier Patent

    Get PDF
    Apparatus and method capable of receiving large quantity of high pressure helium, removing impurities, and discharging at received pressur

    Solving the characteristic initial value problem for colliding plane gravitational and electromagnetic waves

    Get PDF
    A method is presented for solving the characteristic initial value problem for the collision and subsequent nonlinear interaction of plane gravitational or gravitational and electromagnetic waves in a Minkowski background. This method generalizes the monodromy transform approach to fields with nonanalytic behaviour on the characteristics inherent to waves with distinct wave fronts. The crux of the method is in a reformulation of the main nonlinear symmetry reduced field equations as linear integral equations whose solutions are determined by generalized (``dynamical'') monodromy data which evolve from data specified on the initial characteristics (the wavefronts).Comment: 4 pages, RevTe

    Social Capital, Creative Destruction and Economic Growth

    Get PDF
    The dynamic structure of profit rates for 156 US manufacturing companies is analyzed by means of fractional integration techniques as an alternative to the commolny used ARMIA models with respect to the "persistence of profits". The results show - despite the short lengths of the series - that 35,5% of the series have long range dependence and 54% are nonstationary. This is a confirmation of the strong challenge to the competitive environment hypothesis obtained by previous studies.

    Collision of plane gravitational and electromagnetic waves in a Minkowski background: solution of the characteristic initial value problem

    Get PDF
    We consider the collisions of plane gravitational and electromagnetic waves with distinct wavefronts and of arbitrary polarizations in a Minkowski background. We first present a new, completely geometric formulation of the characteristic initial value problem for solutions in the wave interaction region for which initial data are those associated with the approaching waves. We present also a general approach to the solution of this problem which enables us in principle to construct solutions in terms of the specified initial data. This is achieved by re-formulating the nonlinear dynamical equations for waves in terms of an associated linear problem on the spectral plane. A system of linear integral ``evolution'' equations which solve this spectral problem for specified initial data is constructed. It is then demonstrated explicitly how various colliding plane wave space-times can be constructed from given characteristic initial data.Comment: 33 pages, 3 figures, LaTeX. Accepted for publication in Classical and Quantum Gravit

    Proof of a generalized Geroch conjecture for the hyperbolic Ernst equation

    Get PDF
    We enunciate and prove here a generalization of Geroch's famous conjecture concerning analytic solutions of the elliptic Ernst equation. Our generalization is stated for solutions of the hyperbolic Ernst equation that are not necessarily analytic, although it can be formulated also for solutions of the elliptic Ernst equation that are nowhere axis-accessible.Comment: 75 pages (plus optional table of contents). Sign errors in elliptic case equations (1A.13), (1A.15) and (1A.25) are corrected. Not relevant to proof contained in pape

    Some examples of the degradation of properties of materials in space

    Get PDF
    The space environment effects on the silver teflon covering (solar panels) of two SOLRAD SATELLITES AND NTS-Z are examined to analyze the design requirements for the Shuttle Launch Dispenser (SLD)

    Thermodynamics of the frustrated J1J_1-J2J_2 Heisenberg ferromagnet on the body-centered cubic lattice with arbitrary spin

    Full text link
    We use the spin-rotation-invariant Green's function method as well as the high-temperature expansion to discuss the thermodynamic properties of the frustrated spin-SS J1J_{1}-J2J_{2} Heisenberg magnet on the body-centered cubic lattice. We consider ferromagnetic nearest-neighbor bonds J1<0J_1 < 0 and antiferromagnetic next-nearest-neighbor bonds J20J_2 \ge 0 and arbitrary spin SS. We find that the transition point J2cJ_2^c between the ferromagnetic ground state and the antiferromagnetic one is nearly independent of the spin SS, i.e., it is very close to the classical transition point J2c,clas=23J1J_2^{c,{\rm clas}}= \frac{2}{3}|J_1|. At finite temperatures we focus on the parameter regime J2<J2cJ_2<J_2^c with a ferromagnetic ground-state. We calculate the Curie temperature TC(S,J2)T_{C}(S,J_{2}) and derive an empirical formula describing the influence of the frustration parameter J2J_{2} and spin SS on TCT_C. We find that the Curie temperature monotonically decreases with increasing frustration J2J_2, where very close to J2c,clasJ_2^{c,{\rm clas}} the TC(J2)T_C(J_2)-curve exhibits a fast decay which is well described by a logarithmic term 1/log(23J1J2)1/\textrm{log}(\frac{2}{3}|J_1|-J_{2}). To characterize the magnetic ordering below and above TCT_C, we calculate the spin-spin correlation functions S0SR\langle {\bf S}_{\bf 0} {\bf S}_{\bf R} \rangle, the spontaneous magnetization, the uniform static susceptibility χ0\chi_0 as well as the correlation length ξ\xi. Moreover, we discuss the specific heat CVC_V and the temperature dependence of the excitation spectrum. As approaching the transition point J2cJ_2^c some unusual features were found, such as negative spin-spin correlations at temperatures above TCT_C even though the ground state is ferromagnetic or an increase of the spin stiffness with growing temperature.Comment: 19 pages, 10 figures, version as in EPJ

    In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties

    Get PDF
    We have developed a silver-releasing biomaterial with promising potential for wound healing applications. The material is made of ultrashort peptides which can self-assemble in water to form hydrogels. Silver nanoparticles (Ag NPs) were synthesized in situ within the biomaterial, using only UV irradiation and no additional chemical reducing agents. The synthetic strategy allows precise control of the nanoparticle size, with the network of peptide fibers preventing aggregation of Ag NPs. The biomaterial shows increased mechanical strength compared to the hydrogel control. We observed a sustained release of Ag NPs over a period of 14 days. This is a crucial prerequisite for effective anti-bacterial therapy. The ability to inhibit bacterial growth was tested using different bacterial strains, namely gram-negative Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus. Inhibition of bacterial growth was observed for all strains. The best results were obtained for Pseudomonas aeruginosa which is known for exhibiting multidrug resistance. Biocompatibility studies on HDFa cells, using Ag NP-containing hydrogels, did not show any significant influence on cell viability. We propose this silver-releasing hydrogel as an excellent biomaterial with great potential for applications in wound healing due to its low silver content, sustained silver nanoparticle release and biocompatibility
    corecore