33,979 research outputs found
High pressure gas filter system Patent
Developing high pressure gas purification and filtration system for use in test operations of space vehicle
High pressure helium purifier Patent
Apparatus and method capable of receiving large quantity of high pressure helium, removing impurities, and discharging at received pressur
Solving the characteristic initial value problem for colliding plane gravitational and electromagnetic waves
A method is presented for solving the characteristic initial value problem
for the collision and subsequent nonlinear interaction of plane gravitational
or gravitational and electromagnetic waves in a Minkowski background. This
method generalizes the monodromy transform approach to fields with nonanalytic
behaviour on the characteristics inherent to waves with distinct wave fronts.
The crux of the method is in a reformulation of the main nonlinear symmetry
reduced field equations as linear integral equations whose solutions are
determined by generalized (``dynamical'') monodromy data which evolve from data
specified on the initial characteristics (the wavefronts).Comment: 4 pages, RevTe
Social Capital, Creative Destruction and Economic Growth
The dynamic structure of profit rates for 156 US manufacturing companies is analyzed by means of fractional integration techniques as an alternative to the commolny used ARMIA models with respect to the "persistence of profits". The results show - despite the short lengths of the series - that 35,5% of the series have long range dependence and 54% are nonstationary. This is a confirmation of the strong challenge to the competitive environment hypothesis obtained by previous studies.
Collision of plane gravitational and electromagnetic waves in a Minkowski background: solution of the characteristic initial value problem
We consider the collisions of plane gravitational and electromagnetic waves
with distinct wavefronts and of arbitrary polarizations in a Minkowski
background. We first present a new, completely geometric formulation of the
characteristic initial value problem for solutions in the wave interaction
region for which initial data are those associated with the approaching waves.
We present also a general approach to the solution of this problem which
enables us in principle to construct solutions in terms of the specified
initial data. This is achieved by re-formulating the nonlinear dynamical
equations for waves in terms of an associated linear problem on the spectral
plane. A system of linear integral ``evolution'' equations which solve this
spectral problem for specified initial data is constructed. It is then
demonstrated explicitly how various colliding plane wave space-times can be
constructed from given characteristic initial data.Comment: 33 pages, 3 figures, LaTeX. Accepted for publication in Classical and
Quantum Gravit
Proof of a generalized Geroch conjecture for the hyperbolic Ernst equation
We enunciate and prove here a generalization of Geroch's famous conjecture
concerning analytic solutions of the elliptic Ernst equation. Our
generalization is stated for solutions of the hyperbolic Ernst equation that
are not necessarily analytic, although it can be formulated also for solutions
of the elliptic Ernst equation that are nowhere axis-accessible.Comment: 75 pages (plus optional table of contents). Sign errors in elliptic
case equations (1A.13), (1A.15) and (1A.25) are corrected. Not relevant to
proof contained in pape
Some examples of the degradation of properties of materials in space
The space environment effects on the silver teflon covering (solar panels) of two SOLRAD SATELLITES AND NTS-Z are examined to analyze the design requirements for the Shuttle Launch Dispenser (SLD)
Thermodynamics of the frustrated - Heisenberg ferromagnet on the body-centered cubic lattice with arbitrary spin
We use the spin-rotation-invariant Green's function method as well as the
high-temperature expansion to discuss the thermodynamic properties of the
frustrated spin- - Heisenberg magnet on the body-centered
cubic lattice. We consider ferromagnetic nearest-neighbor bonds and
antiferromagnetic next-nearest-neighbor bonds and arbitrary spin
. We find that the transition point between the ferromagnetic ground
state and the antiferromagnetic one is nearly independent of the spin ,
i.e., it is very close to the classical transition point . At finite temperatures we focus on the parameter regime
with a ferromagnetic ground-state. We calculate the Curie
temperature and derive an empirical formula describing the
influence of the frustration parameter and spin on . We find
that the Curie temperature monotonically decreases with increasing frustration
, where very close to the -curve exhibits a
fast decay which is well described by a logarithmic term
. To characterize the magnetic ordering
below and above , we calculate the spin-spin correlation functions
, the spontaneous
magnetization, the uniform static susceptibility as well as the
correlation length . Moreover, we discuss the specific heat and the
temperature dependence of the excitation spectrum. As approaching the
transition point some unusual features were found, such as negative
spin-spin correlations at temperatures above even though the ground state
is ferromagnetic or an increase of the spin stiffness with growing temperature.Comment: 19 pages, 10 figures, version as in EPJ
In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties
We have developed a silver-releasing biomaterial with promising potential for wound healing applications. The material is made of ultrashort peptides which can self-assemble in water to form hydrogels. Silver nanoparticles (Ag NPs) were synthesized in situ within the biomaterial, using only UV irradiation and no additional chemical reducing agents. The synthetic strategy allows precise control of the nanoparticle size, with the network of peptide fibers preventing aggregation of Ag NPs. The biomaterial shows increased mechanical strength compared to the hydrogel control. We observed a sustained release of Ag NPs over a period of 14 days. This is a crucial prerequisite for effective anti-bacterial therapy. The ability to inhibit bacterial growth was tested using different bacterial strains, namely gram-negative Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus. Inhibition of bacterial growth was observed for all strains. The best results were obtained for Pseudomonas aeruginosa which is known for exhibiting multidrug resistance. Biocompatibility studies on HDFa cells, using Ag NP-containing hydrogels, did not show any significant influence on cell viability. We propose this silver-releasing hydrogel as an excellent biomaterial with great potential for applications in wound healing due to its low silver content, sustained silver nanoparticle release and biocompatibility
- …
