1,800 research outputs found
The REsonant Multi-Pulse Ionization injection
The production of high-quality electron bunches in Laser Wake Field
Acceleration relies on the possibility to inject ultra-low emittance bunches in
the plasma wave. In this paper we present a new bunch injection scheme in which
electrons extracted by ionization are trapped by a large-amplitude plasma wave
driven by a train of resonant ultrashort pulses. In the REsonant Multi-Pulse
Ionization (REMPI) injection scheme, the main portion of a single ultrashort
(e.g Ti:Sa) laser system pulse is temporally shaped as a sequence of resonant
sub-pulses, while a minor portion acts as an ionizing pulse. Simulations show
that high-quality electron bunches with normalized emittance as low as
mmmrad and energy spread can be obtained with a single
present-day 100TW-class Ti:Sa laser system
Prospection and Evaluation of (Hemi) Cellulolytic Enzymes Using Untreated and Pretreated Biomasses in Two Argentinean Native Termites
Saccharum officinarum bagasse (common name: sugarcane bagasse) and Pennisetum purpureum (also known as Napier grass) are among the most promising feedstocks for bioethanol production in Argentina and Brazil. In this study, both biomasses were assessed before and after acid pretreatment and following hydrolysis with Nasutitermes aquilinus andCortaritermes fulviceps termite gut digestome. The chemical composition analysis of the biomasses after diluted acid pretreatment showed that the hemicellulose fraction was partially removed. The (hemi) cellulolytic activities were evaluated in bacterial culture supernatantsof termite gut homogenates grown in treated and untreated biomasses. In all cases, we detected significantly higher endoglucanase and xylanase activities using pretreated biomasses compared to untreated biomasses, carboxymethylcellulose and xylan. Several protein bands with (hemi) cellulolytic activity were detected in zymograms and two-dimensionalgel electrophoresis. Some proteins of these bands or spots were identified as xylanolytic peptides by mass spectrometry. Finally, the diversity of cultured cellulolytic bacterial endosymbionts associated to both Argentinean native termite species was analyzed. This study describes, for the first time, bacterial endosymbionts and endogenous (hemi) cellulases of two Argentinean native termites as well as their potential application in degradation of lignocellulosic biomass for bioethanol production.Fil: Ben Guerrero, Emiliano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Arneodo Larochette, Joel Demián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; ArgentinaFil: Bombarda Campanha, Raquel. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Oliveira, Patrícia Abrão de. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Labate, Mônica T. Veneziano. Universidade de Sao Paulo; BrasilFil: Cataldi, Thaís Regiani. Universidade de Sao Paulo; BrasilFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cataldi, Ángel Adrián. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Labate, Carlos A.. Universidade de Sao Paulo; BrasilFil: Rodrigues, Clenilson Martins. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Talia, Paola Monica. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Evaluation of tomato accessions for flavour and flavour-contributing components
Flavour is one of the most highly demanded consumer traits of tomato at present; poor flavour is one of the most commonly heard complaints associated with modern varieties of tomato. In order to combine flavour with other desirable fruit traits in improved cultivars, it is important to determine how much variability exists in the crucial compounds that contribute most to flavour. The objective of the present study was to determine the variability of flavour-contributing components including total soluble solids (TSS) and total titratable acids (TTA) among other subjective traits related to flavour in a core collection of tomato accessions. The core collection was comprised of 173 tomato accessions with a wide genetic background from the United States Department of Agriculture (USDA), Agricultural Research Services (ARS) Plant Genetic Resources Unit repository. The TTA varied from 0.20 to 0.64%, whereas the TSS ranged from 3.4 to 9.0%, indicating the availability of broad variation for these traits. Rinon (PI 118783), Turrialba, Purple Calabash and LA2102 were among the high TTA (>0.45%) containing accessions, whereas those with high TSS (>7.0%) were AVRDC#6, Sponzillo and LA2102. A positive correlation of overall flavour with TTA (r=0.33; P<0.05) and TSS (r=0.37; P<0.05) indicated that these two components play an important role in determining the overall flavour in tomato. Subjectively measured other traits including fruity odour and fruity flavour had positive correlations with overall flavour. Overall flavour is discussed in the context of other traits including fruit firmness. Information obtained from this study may be useful for tomato breeders aiming to improve tomato flavou
High-quality GeV-scale electron bunches with the Resonant Multi-Pulse Ionization Injection
Recently a new injection scheme for Laser Wake Field Acceleration, employing
a single 100-TW-class laser system, has been proposed. In the Resonant
Multi-Pulse Ionization injection (ReMPI) a resonant train of pulses drives a
large amplitude plasma wave that traps electrons extracted from the plasma by
further ionization of a high-Z dopant (Argon in the present paper). While the
pulses of the driver train have intensity below the threshold for the dopant's
ionization, the properly delayed and frequency doubled (or more) ionization
pulse possesses an electric field large enough to extract electrons, though its
normalized amplitude is well below unity. In this paper we will report on
numerical simulations results aimed at the generation of GeV-scale bunches with
normalized emittance and {\it rms} energy below and
, respectively. Analytical consideration of the FEL performance for a
bunch will be also reported.Comment: EAAC 2017 Conference, Elba, Ital
- …
