961 research outputs found
Exchange interactions in transition metal oxides: The role of oxygen spin polarization
Magnetism of transition metal (TM) oxides is usually described in terms of
the Heisenberg model, with orientation-independent interactions between the
spins. However, the applicability of such a model is not fully justified for TM
oxides because spin polarization of oxygen is usually ignored. In the
conventional model based on the Anderson principle, oxygen effects are
considered as a property of the TM ion and only TM interactions are relevant.
Here, we perform a systematic comparison between two approaches for spin
polarization on oxygen in typical TM oxides. To this end, we calculate the
exchange interactions in NiO, MnO, and hematite (Fe2O3) for different magnetic
configurations using the magnetic force theorem. We consider the full spin
Hamiltonian including oxygen sites, and also derive an effective model where
the spin polarization on oxygen renormalizes the exchange interactions between
TM sites. Surprisingly, the exchange interactions in NiO depend on the magnetic
state if spin polarization on oxygen is neglected, resulting in non-Heisenberg
behavior. In contrast, the inclusion of spin polarization in NiO makes the
Heisenberg model more applicable. Just the opposite, MnO behaves as a
Heisenberg magnet when oxygen spin polarization is neglected, but shows strong
non-Heisenberg effects when spin polarization on oxygen is included. In
hematite, both models result in non-Heisenberg behavior. General applicability
of the magnetic force theorem as well as the Heisenberg model to TM oxides is
discussed.Comment: 19 pages, 2 figure
Geometric, electronic and magnetic structure of FeO clusters
Correlation between geometry, electronic structure and magnetism of solids is
both intriguing and elusive. This is particularly strongly manifested in small
clusters, where a vast number of unusual structures appear. Here, we employ
density functional theory in combination with a genetic search algorithm,
GGA and a hybrid functional to determine the structure of gas phase
FeO clusters. For FeO cation clusters we also
calculate the corresponding vibration spectra and compare them with
experiments. We successfully identify FeO, FeO,
FeO, FeO and propose structures for
FeO. Within the triangular geometric structure of
FeO a non-collinear, ferrimagnetic and ferromagnetic state are
comparable in energy. FeO and FeO are
ferrimagnetic with a residual magnetic moment of 1~\muB{} due to ionization.
FeO is ferrimagnetic due to the odd number of Fe atoms. We
compare the electronic structure with bulk magnetite and find
FeO, FeO, FeO to be mixed
valence clusters. In contrast, in FeO and FeO
all Fe are found to be trivalent.Comment: 14 pages, 21 figure
Magnetic properties of Co doped Nb clusters
From magnetic deflection experiments on isolated Co doped Nb clusters we made
the interesting observation of some clusters being magnetic, while others
appear to be non-magnetic. There are in principle two explanations for this
behavior. Either the local moment at the Co site is completely quenched or it
is screened by the delocalized electrons of the cluster, i.e. the Kondo effect.
In order to reveal the physical origin, we conducted a combined theoretical and
experimental investigation. First, we established the ground state geometry of
the clusters by comparing the experimental vibrational spectra with those
obtained from a density functional theory study. Then, we performed an analyses
based on the Anderson impurity model. It appears that the non-magnetic clusters
are due to a complete quenching of the local Co moment and not due to the Kondo
effect. In addition, the magnetic behavior of the clusters can be understood
from an inspection of their electronic structure. Here magnetism is favored
when the effective hybridization around the chemical potential is small, while
the absence of magnetism is signalled by a large effective hybridization around
the chemical potential.Comment: 14 pages, 8 figure
Modeling Klein tunneling and caustics of electron waves in graphene
We employ the tight-binding propagation method to study Klein tunneling and
quantum interference in large graphene systems. With this efficient numerical
scheme, we model the propagation of a wave packet through a potential barrier
and determine the tunneling probability for different incidence angles. We
consider both sharp and smooth potential barriers in n-p-n and n-n' junctions
and find good agreement with analytical and semiclassical predictions. When we
go outside the Dirac regime, we observe that sharp n-p junctions no longer show
Klein tunneling because of intervalley scattering. However, this effect can be
suppressed by considering a smooth potential. Klein tunneling holds for
potentials changing on the scale much larger than the interatomic distance.
When the energies of both the electrons and holes are above the Van Hove
singularity, we observe total reflection for both sharp and smooth potential
barriers. Furthermore, we consider caustic formation by a two-dimensional
Gaussian potential. For sufficiently broad potentials we find a good agreement
between the simulated wave density and the classical electron trajectories.Comment: 14 pages, 12 figure
Physiological changes to the swallowing mechanism following (Chemo)radiotherapy for head and neck cancer: a systematic review
Emerging research suggests that preventative swallowing rehabilitation, undertaken before or during (chemo)radiotherapy ([C]RT), can significantly improve early swallowing outcomes for head and neck cancer (HNC) patients. However, these treatment protocols are highly variable. Determining specific physiological swallowing parameters that are most likely to be impacted post-(C)RT would assist in refining clear targets for preventative rehabilitation. Therefore, this systematic review (1) examined the frequency and prevalence of physiological swallowing deficits observed post-(C)RT for HNC, and (2) determined the patterns of prevalence of these key physiological deficits over time post-treatment. Online databases were searched for relevant papers published between January 1998 and March 2013. A total of 153 papers were identified and appraised for methodological quality and suitability based on exclusionary criteria. Ultimately, 19 publications met the study’s inclusion criteria. Collation of reported prevalence of physiological swallowing deficits revealed reduced laryngeal excursion, base-of-tongue (BOT) dysfunction, reduced pharyngeal contraction, and impaired epiglottic movement as most frequently reported. BOT dysfunction and impaired epiglottic movement showed a collective prevalence of over 75 % in the majority of patient cohorts, whilst reduced laryngeal elevation and pharyngeal contraction had a prevalence of over 50 %. Subanalysis suggested a trend that the prevalence of these key deficits is dynamic although persistent over time. These findings can be used by clinicians to inform preventative intervention and support the use of specific, evidence-based therapy tasks explicitly selected to target the highly prevalent deficits post-(C)RT for HNC
Swallowing, nutrition and patient-rated functional outcomes at 6 months following two non-surgical treatments for T1-T3 oropharyngeal cancer
Altered fractionation radiotherapy with concomitant boost (AFRT-CB) may be considered an alternative treatment for patients not appropriate for chemoradiation (CRT). As functional outcomes following AFRT-CB have been minimally reported, this exploratory paper describes the outcomes of patients managed with AFRT-CB or CRT at 6 months post-treatment
A prospective investigation of swallowing, nutrition, and patient-rated functional impact following altered fractionation radiotherapy with concomitant boost for oropharyngeal cancer
Altered fractionation radiotherapy for head and neck cancer has been associated with improved locoregional control, overall survival, and heightened toxicity compared with conventional treatment. Swallowing, nutrition, and patient-perceived function for altered fractionation radiotherapy with concomitant boost (AFRT-CB) for T1–T3 oropharyngeal squamous cell carcinoma (SCC) have not been previously reported. Fourteen consecutive patients treated with AFRT-CB for oropharyngeal SCC were recruited from November 2006 to August 2009 in a tertiary hospital in Brisbane, Australia. Swallowing, nutrition, and patient-perceived functional impact assessments were conducted pretreatment, at 4–6 weeks post-treatment, and at 6 months post-treatment. Deterioration from pretreatment to 4–6 weeks post-treatment in swallowing, nutrition, and functional impact was evident, likely due to the heightened toxicity associated with AFRT-CB. There was significant improvement at 6 months post-treatment in functional swallowing, nutritional status, patient-perceived swallowing, and overall function, consistent with recovery from acute toxicity. However, weight and patient perception of physical function and side effects remained significantly worse than pretreatment scores. The ongoing deficits related to weight and patient-perceived outcomes at 6 months revealed that this treatment has a long-term impact on function possibly related to the chronic effects of AFRT-CB
Assessing dysphagia via telerehabilitation: patient perceptions and satisfaction
To gain insight into factors which may infl uence future acceptance of dysphagia management via telerehabilitation, patients’ perceptions were examined before and after a telerehabilitation assessment session. Forty adult patients with dysphagia(M = 66 years, SD = 16.25) completed pre- and post-session questionnaires which consisted of 14 matched questions worded to suit pre- and post-conditions. Questions explored comfort with the use of telerehabilitation, satisfaction with audio and video quality, benefi ts of telerehabilitation assessments and patients’ preferred assessment modality. Questions were rated on a 5-point scale (1 = strongly disagree, 3 = unsure, 5 = strongly agree). Patients’ comfort with assessment via telerehabilitation was high in over 80% of the group both pre- and post-assessment. Pre-assessment, patients were unsure what to expect with the auditory and visual aspects of the videoconference, however there were signifi cant positive changes reported post-experience. In relation to perceived benefits of telerehabilitation services in general, most patients believed in the value of telerehabilitation and post-assessment this increased to 90 – 100% agreement. Although 92% felt they would be comfortable receiving services via telerehabilitation, 45% of patients indicated ultimate preference for a traditional faceto-face assessment. The data highlight that patients are interested in and willing to receive services via telerehabilitation; however, any concerns should be addressed pre-assessment
Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato
Phenylpropanoids comprise an important class of plant secondary metabolites. A number of transcription factors have been used to upregulate-specific branches of phenylpropanoid metabolism, but by far the most effective has been the fruit-specific expression of AtMYB12 in tomato, which resulted in as much as 10% of fruit dry weight accumulating as flavonols and hydroxycinnamates. We show that AtMYB12 not only increases the demand of flavonoid biosynthesis but also increases the supply of carbon from primary metabolism, energy and reducing power, which may fuel the shikimate and phenylalanine biosynthetic pathways to supply more aromatic amino acids for secondary metabolism. AtMYB12 directly binds promoters of genes encoding enzymes of primary metabolism. The enhanced supply of precursors, energy and reducing power achieved by AtMYB12 expression can be harnessed to engineer high levels of novel phenylpropanoids in tomato fruit, offering an effective production system for bioactives and other high value ingredients
- …
