6,432 research outputs found

    Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes

    Get PDF
    The detection of mixed modes in subgiants and red giants by the CoRoT and \emph{Kepler} space-borne missions allows us to investigate the internal structure of evolved low-mass stars. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 MM_{\odot} at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.Comment: Accepted in A&A, 7 pages, 8 figure

    Infrared phonon spectra of quasi-one-dimensional Ta2_2NiSe5_5 and Ta2_2NiS5_5

    Full text link
    Using a combination of infrared ellipsometry, time-domain terahertz spectroscopy, and far-infrared reflectometry we have obtained the acac-plane complex dielectric function of monoclinic (C2/cC2/c) Ta2_2NiSe5_5 and orthorhombic (CmcmCmcm) Ta2_2NiS5_5 single crystals. The identified dipole-active phonon modes polarized along aa and cc axes are in good agreement with density functional theory calculations. With increasing temperature the aa-axis phonon modes of Ta2_2NiSe5_5 become poorly discernible, as they are superimposed on the electronic background which gradually fills the energy gap near the monoclinic-to-orthorhombic phase transition temperature TcT_c = 326 K. In Ta2_2NiS5_5, which does not exhibit such a structural transition and remains orthorhombic down to low temperatures, the aa-axis phonon modes are superimposed on a persistent broad electronic mode centered near 16 meV. We attribute this difference to strongly overlapping exciton-phonon complexes in Ta2_2NiSe5_5, as opposed to isolated instances of the same in Ta2_2NiS5_5, and find this to be in good agreement with an excitonic insulator state below TcT_c in the former, as compared to the absence of one in the latter.Comment: 10 pages, 7 figure

    Dust heating by the interstellar radiation field in models of turbulent molecular clouds

    Get PDF
    We have calculated the radiation field, dust grain temperatures, and far infrared emissivity of numerical models of turbulent molecular clouds. When compared to a uniform cloud of the same mean optical depth, most of the volume inside the turbulent cloud is brighter, but most of the mass is darker. There is little mean attenuation from center to edge, and clumping causes the radiation field to be somewhat bluer. There is also a large dispersion, typically by a few orders of magnitude, of all quantities relative to their means. However, despite the scatter, the 850 micron emission maps are well correlated with surface density. The fraction of mass as a function of intensity can be reproduced by a simple hierarchical model of density structure.Comment: 32 pages, 14 figures, submitted to Ap

    Design and analysis of fully integrated differential VCOs

    Get PDF
    Oscillators play a decisive role for electronic equipment in many fields-like communication, navigation or data processing. Especially oscillators are key building blocks in integrated transceivers for wired and wireless communication systems. In this context the study of fully integrated differential VCOs has received attention. In this paper we present an analytic analysis of the steady state oscillation of integrated differential VCOs which is based on a nonlinear model of the oscillator. The outcomes of this are design formulas for the amplitude as well as the stability of the oscillator which take the nonlinearity of the circuit into account. © 2005 Copernicus GmbH

    Sending femtosecond pulses in circles: highly non-paraxial accelerating beams

    Full text link
    We use caustic beam shaping on 100 fs pulses to experimentally generate non-paraxial accelerating beams along a 60 degree circular arc, moving laterally by 14 \mum over a 28 \mum propagation length. This is the highest degree of transverse acceleration reported to our knowledge. Using diffraction integral theory and numerical beam propagation simulations, we show that circular acceleration trajectories represent a unique class of non-paraxial diffraction-free beam profile which also preserves the femtosecond temporal structure in the vicinity of the caustic

    Can Reflection from Grains Diagnose the Albedo?

    Get PDF
    By radiation transfer models with a realistic power spectra of the projected density distributions, we show that the optical properties of grains are poorly constrained by observations of reflection nebulae. The ISM is known to be hierarchically clumped from a variety of observations (molecules, H I, far-infrared). Our models assume the albedo and phase parameter of the dust, the radial optical depth of the sphere averaged over all directions, and random distributions of the dust within the sphere. The outputs are the stellar extinction, optical depth, and flux of scattered light as seen from various viewing angles. Observations provide the extinction and scattered flux from a particular direction. Hierarchical geometry has a large effect on the flux of scattered light emerging from a nebula for a particular extinction of the exciting star. There is a very large spread in both scattered fluxes and extinctions for any distribution of dust. Consequently, an observed stellar extinction and scattered flux can be fitted by a wide range of albedos. With hierarchical geometry it is not completely safe to determine even relative optical constants from multiwavelength observations of the same reflection nebula. The geometry effectively changes with wavelength as the opacity of the clumps varies. Limits on the implications of observing the same object in various wavelengths are discussed briefly. Henry (2002) uses a recipe to determine the scattered flux from a star with a given extinction. It is claimed to be independent of the geometry. It provides considerably more scattering than our models, probably leading to an underestimate of the grain albedos from the UV Diffuse Galactic Light.Comment: 27 pages, including 7 figures. Accepted by Ap

    Genetic characterization of Strongyloides spp. from captive, semi-captive and wild Bornean orangutans (Pongo pygmaeus) in Central and East Kalimantan, Borneo, Indonesia

    Get PDF
    Orangutans (Pongo spp.), Asia's only great apes, are threatened in their survival due to habitat loss, hunting and infections. Nematodes of the genus Strongyloides may represent a severe cause of death in wild and captive individuals. In order to better understand which Strongyloides species/subspecies infect orangutans under different conditions, larvae were isolated from fecal material collected in Indonesia from 9 captive, 2 semi-captive and 9 wild individuals, 18 captive groups of Bornean orangutans and from 1 human working with wild orangutans. Genotyping was done at the genomic rDNA locus (part of the 18S rRNA gene and internal transcribed spacer 1, ITS1) by sequencing amplicons. Thirty isolates, including the one from the human, could be identified as S. fuelleborni fuelleborni with 18S rRNA gene identities of 98·5-100%, with a corresponding published sequence. The ITS1 sequences could be determined for 17 of these isolates revealing a huge variability and 2 main clusters without obvious pattern with regard to attributes of the hosts. The ITS1 amplicons of 2 isolates were cloned and sequenced, revealing considerable variability indicative of mixed infections. One isolate from a captive individual was identified as S. stercoralis (18S rRNA) and showed 99% identity (ITS1) with S. stercoralis sequences from geographically distinct locations and host species. The findings are significant with regard to the zoonotic nature of these parasites and might contribute to the conservation of remaining orangutan population

    The dust temperature distribution in prestellar cores

    Full text link
    We have computed the dust temperature distribution to be expected in a pre-protostellar core in the phase prior to the onset of gravitational instability. We have done this in the approximation that the heating of the dust grains is solely due to the attenuated external radiation field and that the core is optically thin to its own radiation. This permits us to consider non spherically symmetric geometries. We predict the intensity distributions of our model cores at millimeter and sub-millimeter wavelengths and compare with observations of the well studied object L1544. We have also developed an analytical approximation for the temperature at the center of spherically symmetric cores and we compare this with the numerical calculations. Our results show (in agreement with Evans et al. 2001) that the temperatures in the nuclei of cores of high visual extinction (> 30 magnitudes) are reduced to values of below ~8 K or roughly half of the surface temperature. This has the consequence that maps at wavelengths shortward of 1.3 mm see predominantly the low density exterior of pre-protostellar cores. It is extremely difficult to deduce the true density distribution from such maps alone. We have computed the intensity distribution expected on the basis of the models of Ciolek & Basu (2000) and compared with the observations of L1544. The agreement is good with a preference for higher inclinations (37 degrees instead of 16) than that adopted by Ciolek & Basu (2000). We find that a simple extension of the analytic approximation allows a reasonably accurate calculation of the dust temperature as a function of radius in cores with density distributions approximating those expected for Bonnor-Ebert spheres and suggest that this may be a useful tool for future calculations of the gas temperature in such cores.Comment: 14 latex pages, 10 ps figures, A&A accepte

    CP and related phenomena in the context of Stellar Evolution

    Full text link
    We review the interaction in intermediate and high mass stars between their evolution and magnetic and chemical properties. We describe the theory of Ap-star `fossil' fields, before touching on the expected secular diffusive processes which give rise to evolution of the field. We then present recent results from a spectropolarimetric survey of Herbig Ae/Be stars, showing that magnetic fields of the kind seen on the main-sequence already exist during the pre-main sequence phase, in agreement with fossil field theory, and that the origin of the slow rotation of Ap/Bp stars also lies early in the pre-main sequence evolution; we also present results confirming a lack of stars with fields below a few hundred gauss. We then seek which macroscopic motions compete with atomic diffusion in determining the surface abundances of AmFm stars. While turbulent transport and mass loss, in competition with atomic diffusion, are both able to explain observed surface abundances, the interior abundance distribution is different enough to potentially lead to a test using asterosismology. Finally we review progress on the turbulence-driving and mixing processes in stellar radiative zones.Comment: Proceedings of IAU GA in Rio, JD4 on Ap stars; 10 pages, 7 figure

    Infectivity of Cryptosporidium parvum genotype I in conventionally reared piglets and lambs

    Get PDF
    Parasites of the genus Cryptosporidium are intracellular parasites that occur throughout the animal kingdom and have been reported in many species of mammals, including human. Most infections in humans are caused by two C. parvum genotypes, genotype I and genotype II; these are the human and the bovine (zoonotic) genotypes, respectively. Successful experimental infection of Cryptosporidium parvum genotype I "human genotype" is described in four conventionally reared piglets and in a lamb. The inoculum was originally obtained from two diarrheic children, and the Cryptosporidium genotypes were determined by PCR and rDNA sequencing. The infective dose was between 106 and 2×106oocysts. No clinical signs were observed in the infected animals, except in a piglet that showed watery diarrhea. The oocyst shedding period in positive animals ranged between 4 and 10 days. Histopathologic examination of the gastrointestinal tract of two positive piglets revealed shortening of the villi and denudation of the villous tips of the jejunum. In one piglet, the colon mucosa revealed numerous Cryptosporidium oocysts. The storage time of the inocula (≤3 weeks in PBS at 4°C) and the age of the animal (newborn) were important for the successful induction of infectio
    corecore