578 research outputs found
Low-Frequency Spectral Turn-Overs in Millisecond Pulsars Studied from Imaging Observations
Measurements of pulsar flux densities are of great importance for
understanding the pulsar emission mechanism and for predictions of pulsar
survey yields and the pulsar population at large. Typically these flux
densities are determined from phase-averaged "pulse profiles", but this method
has limited applicability at low frequencies because the observed pulses can
easily be spread out by interstellar effects like scattering or dispersion,
leading to a non-pulsed continuum component that is necessarily ignored in this
type of analysis. In particular for the class of the millisecond pulsars (MSPs)
at frequencies below 200MHz, such interstellar effects can seriously compromise
de- tectability and measured flux densities. In this paper we investigate MSP
spectra based on a complementary approach, namely through investigation of
archival con- tinuum imaging data. Even though these images lose sensitivity to
pulsars since the on-pulse emission is averaged with off-pulse noise, they are
insensitive to effects from scattering and provide a reliable way to determine
the flux density and spectral indices of MSPs based on both pulsed and unpulsed
components. Using the 74MHz VLSSr as well as the 325MHz WENSS and 1.4GHz NVSS
catalogues, we investigate the imaging flux densities of MSPs and evaluate the
likelihood of spectral turn-overs in this population. We determine three new
MSP spectral indices and identify six new MSPs with likely spectral turn-overs.Comment: 10 pages, 4 figures, 3 tables, accepted for publication in MNRA
Selection of radio pulsar candidates using artificial neural networks
Radio pulsar surveys are producing many more pulsar candidates than can be
inspected by human experts in a practical length of time. Here we present a
technique to automatically identify credible pulsar candidates from pulsar
surveys using an artificial neural network. The technique has been applied to
candidates from a recent re-analysis of the Parkes multi-beam pulsar survey
resulting in the discovery of a previously unidentified pulsar.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society. 9 pages, 7 figures, and 1 tabl
The High Time Resolution Universe Pulsar Survey IV: Discovery and polarimetry of millisecond pulsars
We present the discovery of six millisecond pulsars (MSPs) in the High Time
Resolution Universe (HTRU) survey for pulsars and fast transients carried out
with the Parkes radio telescope. All six are in binary systems with
approximately circular orbits and are likely to have white dwarf companions.
PSR J1017-7156 has a high flux density and a narrow pulse width, making it
ideal for precision timing experiments. PSRs J1446-4701 and J1125-5825 are
coincident with gamma-ray sources, and folding the high-energy photons with the
radio timing ephemeris shows evidence of pulsed gamma-ray emission. PSR
J1502-6752 has a spin period of 26.7 ms, and its low period derivative implies
that it is a recycled pulsar. The orbital parameters indicate it has a very low
mass function, and therefore a companion mass much lower than usually expected
for such a mildly recycled pulsar. In addition we present polarisation profiles
for all 12 MSPs discovered in the HTRU survey to date. Similar to previous
observations of MSPs, we find that many have large widths and a wide range of
linear and circular polarisation fractions. Their polarisation profiles can be
highly complex, and although the observed position angles often do not obey the
rotating vector model, we present several examples of those that do. We
speculate that the emission heights of MSPs are a substantial fraction of the
light cylinder radius in order to explain broad emission profiles, which then
naturally leads to a large number of cases where emission from both poles is
observed.Comment: Update to correct affiliation for CAASTRO. 16 pages, 18 figures.
Accepted for publication in MNRA
Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism
We explore with self-consistent 2D F{\sc{ornax}} simulations the dependence
of the outcome of collapse on many-body corrections to neutrino-nucleon cross
sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy
nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and
neutrino-nucleon scattering. Importantly, proximity to criticality amplifies
the role of even small changes in the neutrino-matter couplings, and such
changes can together add to produce outsized effects. When close to the
critical condition the cumulative result of a few small effects (including
seeds) that individually have only modest consequence can convert an anemic
into a robust explosion, or even a dud into a blast. Such sensitivity is not
seen in one dimension and may explain the apparent heterogeneity in the
outcomes of detailed simulations performed internationally. A natural
conclusion is that the different groups collectively are closer to a realistic
understanding of the mechanism of core-collapse supernovae than might have
seemed apparent.Comment: 25 pages; 10 figure
Constraining the regular Galactic Magnetic Field with the 5-year WMAP polarization measurements at 22 GHz
[ABRIDGED] The knowledge of the regular component of the Galactic magnetic
field gives important information about the structure and dynamics of the Milky
Way, as well as constitutes a basic tool to determine cosmic rays trajectories.
It can also provide clear windows where primordial magnetic fields could be
detected. We want to obtain the regular (large scale) pattern of the magnetic
field distribution of the Milky Way that better fits the polarized synchrotron
emission as seen by the 5-year WMAP data at 22 GHz. We have done a systematic
study of a number of Galactic magnetic field models: axisymmetric, bisymmetric,
logarithmic spiral arms, concentric circular rings with reversals and
bi-toroidal. We have explored the parameter space defining each of these models
using a grid-based approach. In total, more than one million models are
computed. The model selection is done using a Bayesian approach. For each
model, the posterior distributions are obtained and marginalised over the
unwanted parameters to obtain the marginal 1-D probability distribution
functions. In general, axisymmetric models provide a better description of the
halo component, although attending to their goodness-of-fit, the rest of the
models cannot be rejected. In the case of disk component, the analysis is not
very sensitive for obtaining the disk large scale structure, because of the
effective available area (less than 8% of the whole map and less than 40% of
the disk). Nevertheless, within a given family of models, the best-fit
parameters are compatible with those found in the literature. The family of
models that better describes the polarized synchrotron halo emission is the
axisymmetric one, with magnetic spiral arms with a pitch angle of ~24 degrees,
and a strong vertical field of 1 microG at z ~ 1 kpc. When a radial variation
is fitted, models require fast variations.Comment: 14 pages, 9 figures. Accepted for publication in A&
GS305+04-26:Revisiting the ISM around the CenOB1 stellar association
Massive stars deeply modify their surrounding ISM via their high throughput
of ionizing photons and their strong stellar winds. In this way they may create
large expanding structures of neutral gas. We study a new large HI shell,
labelled GS305+04-26, and its relationship with the OB association CenOB1. To
carry out this study we have used a multi-wavelenght approach. We analyze
neutral hydrogen (HI) line data retrieved from the Leiden-Argentina-Bonn (LAB)
survey, new spectroscopic optical observations obtained at CASLEO, and make use
of proper motion databases available via Internet. The analysis of the HI data
reveals a large expanding structure GS305+04-26 centered at
(l,b)=(305^{\degr}, +4^{\degr}) in the velocity range from -33 to -17 km/s.
Based on its central velocity, -26 km/s, and using standard galactic rotation
models, a distance of 2.5(+-)0.9 kpc is inferred. This structure, elliptical in
shape, has major and minor axis of 440 and 270 pc, respectively. Its expansion
velocity, total gaseous mass, and kinetic energy are ~8 km/s, (2.4(+-)0.5)x10^5
Mo, and (1.6(+-)0.4)x10^{50} erg, respectively. Several stars of the
OB-association CenOB1 are seen projected onto, and within, the boundaries of
GS305+04-26. Based on an analysis of proper motions, new members of CenOB1 are
identified. The mechanical energy injected by these stars could have been the
origin of this HI structure.Comment: 14 pages, 6 figures, A&A (in press
Rotation measure variations for 20 millisecond pulsars
We report on variations in the mean position angle of the 20 millisecond
pulsars being observed as part of the Parkes Pulsar Timing Array (PPTA)
project. It is found that the observed variations are dominated by changes in
the Faraday rotation occurring in the Earth's ionosphere. Two ionospheric
models are used to correct for the ionospheric contribution and it is found
that one based on the International Reference Ionosphere gave the best results.
Little or no significant long-term variation in interstellar RM was found with
limits typically about 0.1 rad m yr in absolute value. In a few
cases, apparently significant RM variations over timescales of a few 100 days
or more were seen. These are unlikely to be due to localised magnetised regions
crossing the line of sight since the implied magnetic fields are too high. Most
probably they are statistical fluctuations due to random spatial and temporal
variations in the interstellar electron density and magnetic field along the
line of sight.Comment: Accepted for publication in Astrophysics & Space Scienc
- …
