86 research outputs found

    Weak Poisson structures on infinite dimensional manifolds and hamiltonian actions

    Full text link
    We introduce a notion of a weak Poisson structure on a manifold MM modeled on a locally convex space. This is done by specifying a Poisson bracket on a subalgebra \cA \subeq C^\infty(M) which has to satisfy a non-degeneracy condition (the differentials of elements of \cA separate tangent vectors) and we postulate the existence of smooth Hamiltonian vector fields. Motivated by applications to Hamiltonian actions, we focus on affine Poisson spaces which include in particular the linear and affine Poisson structures on duals of locally convex Lie algebras. As an interesting byproduct of our approach, we can associate to an invariant symmetric bilinear form κ\kappa on a Lie algebra \g and a κ\kappa-skew-symmetric derivation DD a weak affine Poisson structure on \g itself. This leads naturally to a concept of a Hamiltonian GG-action on a weak Poisson manifold with a \g-valued momentum map and hence to a generalization of quasi-hamiltonian group actions

    Integrable relativistic systems given by Hamiltonians with momentum-spin-orbit coupling

    Full text link
    In the paper we investigate the evolution of the relativistic particle (massive and massless) with spin defined by Hamiltonian containing the terms with momentum-spin-orbit coupling. We integrate the corresponding Hamiltonian equations in quadratures and express their solutions in terms of elliptic functions.Comment: 18 page

    Path space forms and surface holonomy

    Full text link
    We develop parallel transport on path spaces from a differential geometric approach, whose integral version connects with the category theoretic approach. In the framework of 2-connections, our approach leads to further development of higher gauge theory, where end points of the path need not be fixed.Comment: 6 pages, 2 figures. Talk delivered by S. Chatterjee at XXVIII WGMP, 28th June-4th July, 2009. Bialowieza, Polan

    Hierarchy of integrable Hamiltonians describing of nonlinear n-wave interaction

    Full text link
    In the paper we construct an hierarchy of integrable Hamiltonian systems which describe the variation of n-wave envelopes in nonlinear dielectric medium. The exact solutions for some special Hamiltonians are given in terms of elliptic functions of the first kind.Comment: 17 page

    The Poisson equations in the nonholonomic Suslov problem: Integrability, meromorphic and hypergeometric solutions

    Full text link
    We consider the problem of integrability of the Poisson equations describing spatial motion of a rigid body in the classical nonholonomic Suslov problem. We obtain necessary conditions for their solutions to be meromorphic and show that under some further restrictions these conditions are also sufficient. The latter lead to a family of explicit meromorphic solutions, which correspond to rather special motions of the body in space. We also give explicit extra polynomial integrals in this case. In the more general case (but under one restriction), the Poisson equations are transformed into a generalized third order hypergeometric equation. A study of its monodromy group allows us also to calculate the "scattering" angle: the angle between the axes of limit permanent rotations of the body in space

    Realization of compact Lie algebras in K\"ahler manifolds

    Full text link
    The Berezin quantization on a simply connected homogeneous K\"{a}hler manifold, which is considered as a phase space for a dynamical system, enables a description of the quantal system in a (finite-dimensional) Hilbert space of holomorphic functions corresponding to generalized coherent states. The Lie algebra associated with the manifold symmetry group is given in terms of first-order differential operators. In the classical theory, the Lie algebra is represented by the momentum maps which are functions on the manifold, and the Lie product is the Poisson bracket given by the K\"{a}hler structure. The K\"{a}hler potentials are constructed for the manifolds related to all compact semi-simple Lie groups. The complex coordinates are introduced by means of the Borel method. The K\"{a}hler structure is obtained explicitly for any unitary group representation. The cocycle functions for the Lie algebra and the Killing vector fields on the manifold are also obtained
    corecore