2,580 research outputs found

    Lower Tail Dependence for Archimedean Copulas: Characterizations and Pitfalls

    Get PDF
    Tail dependence copulas provide a natural perspective from which one can study the dependence in the tail of a multivariate distribution.For Archimedean copulas with continuously differentiable generators, regular variation of the generator near the origin is known to be closely connected to convergence of the corresponding lower tail dependence copulas to the Clayton copula.In this paper, these characterizations are refined and extended to the case of generators which are not necessarily continuously differentiable.Moreover, a counterexample is constructed showing that even if the generator of a strict Archimedean copula is continuously differentiable and slowly varying at the origin, then the lower tail dependence copulas do not need to converge to the independent copula.Archimedean copula;regular variation;tail dependence;de Haan class

    Projection Estimates of Constrained Functional Parameters

    Get PDF
    AMS classifications: 62G05; 62G07; 62G08; 62G20; 62G32;estimation;convex function;extreme value copula;Pickands dependence function;projection;shape constraint;support function;tangent cone

    Convergence of Archimedean Copulas

    Get PDF
    Convergence of a sequence of bivariate Archimedean copulas to another Archimedean copula or to the comonotone copula is shown to be equivalent with convergence of the corresponding sequence of Kendall distribution functions.No extra differentiability conditions on the generators are needed.Archimedean copula;generator;Kendall distribution function

    Edgeworth Expansions for the Distribution Function of the Hill Estimator

    Get PDF
    We establish Edgeworth expansions for the distribution function of the centered and normalized Hill estimator for the positive extreme value index.estimation;variation;statistical distribution

    Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials

    Full text link
    Many applications in risk analysis, especially in environmental sciences, require the estimation of the dependence among multivariate maxima. A way to do this is by inferring the Pickands dependence function of the underlying extreme-value copula. A nonparametric estimator is constructed as the sample equivalent of a multivariate extension of the madogram. Shape constraints on the family of Pickands dependence functions are taken into account by means of a representation in terms of a specific type of Bernstein polynomials. The large-sample theory of the estimator is developed and its finite-sample performance is evaluated with a simulation study. The approach is illustrated by analyzing clusters consisting of seven weather stations that have recorded weekly maxima of hourly rainfall in France from 1993 to 2011

    An M-Estimator for Tail Dependence in Arbitrary Dimensions

    Get PDF
    Consider a random sample in the max-domain of attraction of a multivariate extreme value distribution such that the dependence structure of the attractor belongs to a parametric model. A new estimator for the unknown parameter is defined as the value that minimises the distance between a vector of weighted integrals of the tail dependence function and their empirical counterparts. The minimisation problem has, with probability tending to one, a unique, global solution. The estimator is consistent and asymptotically normal. The spectral measures of the tail dependence models to which the method applies can be discrete or continuous. Examples demonstrate the applicability and the performance of the method.asymptotic statistics;factor model;M-estimation;multivariate extremes;tail dependence

    Inference on the tail process with application to financial time series modelling

    Full text link
    To draw inference on serial extremal dependence within heavy-tailed Markov chains, Drees, Segers and Warcho{\l} [Extremes (2015) 18, 369--402] proposed nonparametric estimators of the spectral tail process. The methodology can be extended to the more general setting of a stationary, regularly varying time series. The large-sample distribution of the estimators is derived via empirical process theory for cluster functionals. The finite-sample performance of these estimators is evaluated via Monte Carlo simulations. Moreover, two different bootstrap schemes are employed which yield confidence intervals for the pre-asymptotic spectral tail process: the stationary bootstrap and the multiplier block bootstrap. The estimators are applied to stock price data to study the persistence of positive and negative shocks.Comment: 22 page
    corecore