4 research outputs found

    Testing Einstein Gravity with Cosmic Growth and Expansion

    Get PDF
    We test Einstein gravity using cosmological observations of both expansion and structure growth, including the latest data from supernovae (Union2.1), CMB (WMAP7), weak lensing (CFHTLS) and peculiar velocity of galaxies (WiggleZ). We fit modified gravity parameters of the generalized Poisson equations simultaneously with the effective equation of state for the background evolution, exploring the covariances and model dependence. The results show that general relativity is a good fit to the combined data. Using a Pad{\'e} approximant form for the gravity deviations accurately captures the time and scale dependence for theories like f(R)f(R) and DGP gravity, and weights high and low redshift probes fairly. For current observations, cosmic growth and expansion can be fit simultaneously with little degradation in accuracy, while removing the possibility of bias from holding one aspect fixed.Comment: 5 pages, 3 figures; Accepted to Phys. Rev.

    The BigBOSS Experiment

    No full text
    BigBOSS is a Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a wide-area galaxy and quasar redshift survey over 14,000 square degrees. It has been conditionally accepted by NOAO in response to a call for major new instrumentation and a high-impact science program for the 4-m Mayall telescope at Kitt Peak. The BigBOSS instrument is a robotically-actuated, fiber-fed spectrograph capable of taking 5000 simultaneous spectra over a wavelength range from 340 nm to 1060 nm, with a resolution R = 3000-4800. Using data from imaging surveys that are already underway, spectroscopic targets are selected that trace the underlying dark matter distribution. In particular, targets include luminous red galaxies (LRGs) up to z = 1.0, extending the BOSS LRG survey in both redshift and survey area. To probe the universe out to even higher redshift, BigBOSS will target bright [OII] emission line galaxies (ELGs) up to z = 1.7. In total, 20 million galaxy redshifts are obtained to measure the BAO feature, trace the matter power spectrum at smaller scales, and detect redshift space distortions. BigBOSS will provide additional constraints on early dark energy and on the curvature of the universe by measuring the Ly-alpha forest in the spectra of over 600,000 2.2 < z < 3.5 quasars. BigBOSS galaxy BAO measurements combined with an analysis of the broadband power, including the Ly-alpha forest in BigBOSS quasar spectra, achieves a FOM of 395 with Planck plus Stage III priors. This FOM is based on conservative assumptions for the analysis of broad band power (kmax = 0.15), and could grow to over 600 if current work allows us to push the analysis to higher wave numbers (kmax = 0.3). BigBOSS will also place constraints on theories of modified gravity and inflation, and will measure the sum of neutrino masses to 0.024 eV accuracy.Comment: This report is based on the BigBOSS proposal submission to NOAO in October 2010, and reflects the project status at that time with minor update
    corecore