1,904 research outputs found

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Performance of electron and photon triggers in ATLAS during LHC Run 2

    Get PDF
    Electron and photon triggers covering transverseenergies from 5 GeV to several TeV are essential for theATLAS experiment to record signals for a wide variety ofphysics: from Standard Model processes to searches for newphenomena in both proton–proton and heavy-ion collisions.To cope with a fourfold increase of peak LHC luminosityfrom 2015 to 2018 (Run 2), to 2.1×1034cm−2s−1, anda similar increase in the number of interactions per beam-crossing to about 60, trigger algorithms and selections wereoptimised to control the rates while retaining a high effi-ciency for physics analyses. For proton–proton collisions, thesingle-electron trigger efficiency relative to a single-electronoffline selection is at least 75% for an offline electron of31 GeV, and rises to 96% at 60 GeV; the trigger efficiency ofa 25 GeV leg of the primary diphoton trigger relative to a tightoffline photon selection is more than 96% for an offline pho-ton of 30 GeV. For heavy-ion collisions, the primary electronand photon trigger efficiencies relative to the correspondingstandard offline selections are at least 84% and 95%, respec-tively, at 5 GeV above the corresponding trigger threshold

    Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton–proton collisions at ATLAS

    Get PDF
    Differential cross-section measurements are presented for the electroweak production of two jets in association with a Z boson. These measurements are sensitive to the vector-boson fusion production mechanism and provide a fundamental test of the gauge structure of the Standard Model. The analysis is performed using proton–proton collision data collected by ATLAS at s=13TeVs=13 TeV\sqrt{s}=13\ \hbox {TeV} and with an integrated luminosity of 139fb-1139 fb1139\ \hbox {fb}^{-1}. The differential cross-sections are measured in the Z→ℓ+ℓ-Z+Z\rightarrow \ell ^+\ell ^- decay channel (ℓ=e,μ=e,μ\ell =e,\mu ) as a function of four observables: the dijet invariant mass, the rapidity interval spanned by the two jets, the signed azimuthal angle between the two jets, and the transverse momentum of the dilepton pair. The data are corrected for the effects of detector inefficiency and resolution and are sufficiently precise to distinguish between different state-of-the-art theoretical predictions calculated using Powheg+Pythia8, Herwig7+Vbfnlo and Sherpa 2.2. The differential cross-sections are used to search for anomalous weak-boson self-interactions using a dimension-six effective field theory. The measurement of the signed azimuthal angle between the two jets is found to be particularly sensitive to the interference between the Standard Model and dimension-six scattering amplitudes and provides a direct test of charge-conjugation and parity invariance in the weak-boson self-interactions

    Measurement of the tt ̄ cross section and its ratio to the Z production cross section using pp collisions at s=13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive top-quark-pair production cross section σtt ̄ and its ratio to the Z-boson production cross section have been measured in proton–proton collisions at s=13.6 TeV, using 29 fb−1 of data collected in 2022 with the ATLAS experiment at the Large Hadron Collider. Using events with an opposite-charge electron-muon pair and b-tagged jets, and assuming Standard Model decays, the top-quark-pair production cross section is measured to be σtt ̄=850±3(stat.)±18(syst.)±20(lumi.) pb. The ratio of the tt ̄ and the Z-boson production cross sections is also measured, where the Z-boson contribution is determined for inclusive e+e− and μ+μ− events in a fiducial phase space. The relative uncertainty on the ratio is reduced compared to the tt ̄ cross section, thanks to the cancellation of several systematic uncertainties. The result for the ratio, Rtt ̄/Z=1.145±0.003(stat.)±0.021(syst.)±0.002(lumi.) is consistent with the Standard Model prediction using the PDF4LHC21 PDF set

    Author Correction: A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

    Get PDF
    In the version of this article initially published, the ATLAS Collaboration author names, affiliations and acknowledgements were omitted and have now been included in the HTML and PDF versions of the article

    Measurement of the charge asymmetry in top-quark pair production in association with a photon with the ATLAS experiment

    Get PDF
    A measurement of the charge asymmetry in top-quark pair (tt ̄) production in association with a photon is presented. The measurement is performed in the single-lepton tt ̄ decay channel using proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN at a centre-of-mass-energy of 13 TeV during the years 2015–2018, corresponding to an integrated luminosity of 139 fb−1. The charge asymmetry is obtained from the distribution of the difference of the absolute rapidities of the top quark and antiquark using a profile likelihood unfolding approach. It is measured to be AC=−0.003±0.029 in agreement with the Standard Model expectation

    Search for heavy resonances decaying into a pair of Z bosons in the ℓ + ℓ - ℓ ′ + ℓ ′ - and ℓ + ℓ - ν ν ¯ final states using 139 fb - 1 of proton–proton collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: A search for heavy resonances decaying into a pair of Z bosons leading to ℓ+ℓ-ℓ′+ℓ′- and ℓ+ℓ-νν¯ final states, where ℓ stands for either an electron or a muon, is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV collected from 2015 to 2018 that corresponds to the integrated luminosity of 139 fb-1 recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Different mass ranges spanning 200 GeV to 2000 GeV for the hypothetical resonances are considered, depending on the final state and model. In the absence of a significant observed excess, the results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, and the limits for the spin-2 resonance are used to constrain the Randall–Sundrum model with an extra dimension giving rise to spin-2 graviton excitations

    Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2

    Get PDF
    The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas facility. The algorithm output consists of a pair of correction constants per chamber which are applied to baseline calibrations, and determined to be valid for the entire ATLAS Run 2. The final single-hit spatial resolution, averaged over 1172 monitored drift tube chambers, is 81.7 +/- 2.2 mu m
    corecore