139 research outputs found
Dynamical Instability of Self-Tuning Solution with Antisymmetric Tensor Field
We consider the dynamical stability of a static brane model that incorporates
a three-index antisymmetric tensor field and has recently been proposed as a
possible solution to the cosmological constant problem. Ultimately, we are able
to establish the existence of time-dependent, purely gravitational
perturbations. As a consequence, the static solution of interest is
``dangerously'' located at an unstable saddle point. This outcome is suggestive
of a hidden fine tuning in what is an otherwise self-tuning model.Comment: 16 Pages, Latex; Discussion added but conclusions unchange
Density Profiles of Cold Dark Matter Substructure: Implications for the Missing Satellites Problem
The structural evolution of substructure in cold dark matter (CDM) models is
investigated combining ``low-resolution'' satellites from cosmological N-body
simulations of parent halos with N=10^7 particles with high-resolution
individual subhalos orbiting within a static host potential. We show that, as a
result of mass loss, convergence in the central density profiles requires the
initial satellites to be resolved with N=10^7 particles and parsec-scale force
resolution. We find that the density profiles of substructure halos can be well
fitted with a power-law central slope that is unmodified by tidal forces even
after the tidal stripping of over 99% of the initial mass and an exponential
cutoff in the outer parts. The solution to the missing-satellites problem
advocated by Stoehr et al. in 2002 relied on the flattening of the dark matter
(DM) halo central density cusps by gravitational tides, enabling the observed
satellites to be embedded within DM halos with maximum circular velocities as
large as 60 km/s. In contrast, our results suggest that tidal interactions do
not provide the mechanism for associating the dwarf spheroidal satellites
(dSphs) of the Milky Way with the most massive substructure halos expected in a
CDM universe. We compare the predicted velocity dispersion profiles of Fornax
and Draco to observations, assuming that they are embedded in CDM halos. Models
with isotropic and tangentially anisotropic velocity distributions for the
stellar component fit the data only if the surrounding DM halos have maximum
circular velocities in the range 20-35 km/s. If the dSphs are embedded within
halos this large then the overabundance of satellites within the concordance
LCDM cosmological model is significantly alleviated, but this still does not
provide the entire solution.Comment: Accepted for publication in ApJ, 17 pages, 9 figures, LaTeX (uses
emulateapj5.sty
Substructure Boosts to Dark Matter Annihilation from Sommerfeld Enhancement
The recently introduced Sommerfeld enhancement of the dark matter
annihilation cross section has important implications for the detection of dark
matter annihilation in subhalos in the Galactic halo. In addition to the boost
to the dark matter annihilation cross section from the high densities of these
subhalos with respect to the main halo, an additional boost caused by the
Sommerfeld enhancement results from the fact that they are kinematically colder
than the Galactic halo. If we further believe the generic prediction of CDM
that in each subhalo there is an abundance of substructure which is
approximately self-similar to that of the Galactic halo, then I show that
additional boosts coming from the density enhancements of these small
substructures and their small velocity dispersions enhance the dark matter
annihilation cross section even further. I find that very large boost factors
( to ) are obtained in a large class of models. The implications of
these boost factors for the detection of dark matter annihilation from dwarf
Spheroidal galaxies in the Galactic halo are such that, generically, they
outshine the background gamma-ray flux and are detectable by the Fermi
Gamma-ray Space Telescope.Comment: PRD in pres
The Via Lactea INCITE Simulation: Galactic Dark Matter Substructure at High Resolution
It is a clear unique prediction of the cold dark matter paradigm of
cosmological structure formation that galaxies form hierarchically and are
embedded in massive, extended dark halos teeming with self-bound substructure
or "subhalos". The amount and spatial distribution of subhalos around their
host provide unique information and clues on the galaxy assembly process and
the nature of the dark matter. Here we present results from the Via Lactea
INCITE simulation, a one billion particle, one million cpu-hour simulation of
the formation and evolution of a Galactic dark matter halo and its substructure
population.Comment: 10 pages, Proceedings of the SciDAC 2008 conference, (Seattle, July
13-17, 2008
The detection of sub-solar mass dark matter halos
Dark matter halos of sub-solar mass are the first bound objects to form in
cold dark matter theories. In this article, I discuss the present understanding
of "microhalos'', their role in structure formation, and the implications of
their potential presence, in the interpretation of dark matter experiments.Comment: 18 pages, 7 figures. Invited contribution to NJP Focus Issue on "Dark
Matter and Particle Physics
A simple analytical model for dark matter halo structure and adiabatic contraction
A simple analytical model for describing inner parts of dark matter halo is
considered. It is assumed that dark matter density is power-law. The model
deals with dark matter distribution function in phase space of adiabatic
invariants (radial action and angular momentum). Two variants are considered
for the angular part of the distribution function: narrow and broad
distribution. The model allows to describe explicitly the process of adiabatic
contraction of halo due to change of gravitational potential caused by
condensation of baryonic matter in the centre. The modification of dark matter
density in the centre is calculated, and is it shown that the standard
algorithm of adiabatic contraction calculation overestimates the compressed
halo density, especially in the case of strong radial anisotropy.Comment: 5 pages, 3 figures. v3 - major improvements, another halo model
introduced, discussion extende
Gravitational detection of a low-mass dark satellite at cosmological distance
The mass-function of dwarf satellite galaxies that are observed around Local
Group galaxies substantially differs from simulations based on cold dark
matter: the simulations predict many more dwarf galaxies than are seen. The
Local Group, however, may be anomalous in this regard. A massive dark satellite
in an early-type lens galaxy at z = 0.222 was recently found using a new method
based on gravitational lensing, suggesting that the mass fraction contained in
substructure could be higher than is predicted from simulations. The lack of
very low mass detections, however, prohibited any constraint on their mass
function. Here we report the presence of a 1.9 +/- 0.1 x 10^8 M_sun dark
satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun
denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius
galaxy, which is a satellite of the Milky Way. We determine the logarithmic
slope of the mass function for substructure beyond the local Universe to be
alpha = 1.1^+0.6_-0.4, with an average mass-fraction of f = 3.3^+3.6_-1.8 %, by
combining data on both of these recently discovered galaxies. Our results are
consistent with the predictions from cold dark matter simulations at the 95 per
cent confidence level, and therefore agree with the view that galaxies formed
hierarchically in a Universe composed of cold dark matter.Comment: 25 pages, 7 figures, accepted for publication in Nature (19 January
2012
Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry
We present a general methodology for determining the gamma-ray flux from
annihilation of dark matter particles in Milky Way satellite galaxies, focusing
on two promising satellites as examples: Segue 1 and Draco. We use the
SuperBayeS code to explore the best-fitting regions of the Constrained Minimal
Supersymmetric Standard Model (CMSSM) parameter space, and an independent MCMC
analysis of the dark matter halo properties of the satellites using published
radial velocities. We present a formalism for determining the boost from halo
substructure in these galaxies and show that its value depends strongly on the
extrapolation of the concentration-mass (c(M)) relation for CDM subhalos down
to the minimum possible mass. We show that the preferred region for this
minimum halo mass within the CMSSM with neutralino dark matter is ~10^-9-10^-6
solar masses. For the boost model where the observed power-law c(M) relation is
extrapolated down to the minimum halo mass we find average boosts of about 20,
while the Bullock et al (2001) c(M) model results in boosts of order unity. We
estimate that for the power-law c(M) boost model and photon energies greater
than a GeV, the Fermi space-telescope has about 20% chance of detecting a dark
matter annihilation signal from Draco with signal-to-noise greater than 3 after
about 5 years of observation
Conservative Constraints on Dark Matter from the Fermi-LAT Isotropic Diffuse Gamma-Ray Background Spectrum
We examine the constraints on final state radiation from Weakly Interacting
Massive Particle (WIMP) dark matter candidates annihilating into various
standard model final states, as imposed by the measurement of the isotropic
diffuse gamma-ray background by the Large Area Telescope aboard the Fermi
Gamma-Ray Space Telescope. The expected isotropic diffuse signal from dark
matter annihilation has contributions from the local Milky Way (MW) as well as
from extragalactic dark matter. The signal from the MW is very insensitive to
the adopted dark matter profile of the halos, and dominates the signal from
extragalactic halos, which is sensitive to the low mass cut-off of the halo
mass function. We adopt a conservative model for both the low halo mass
survival cut-off and the substructure boost factor of the Galactic and
extragalactic components, and only consider the primary final state radiation.
This provides robust constraints which reach the thermal production
cross-section for low mass WIMPs annihilating into hadronic modes. We also
reanalyze limits from HESS observations of the Galactic Ridge region using a
conservative model for the dark matter halo profile. When combined with the
HESS constraint, the isotropic diffuse spectrum rules out all interpretations
of the PAMELA positron excess based on dark matter annihilation into two lepton
final states. Annihilation into four leptons through new intermediate states,
although constrained by the data, is not excluded.Comment: 11 pages, 5 figures. v3: minor revisions, matches version to appear
in JCA
Fitting the Gamma-Ray Spectrum from Dark Matter with DMFIT: GLAST and the Galactic Center Region
We study the potential of GLAST to unveil particle dark matter properties
with gamma-ray observations of the Galactic center region. We present full
GLAST simulations including all gamma-ray sources known to date in a region of
4 degrees around the Galactic center, in addition to the diffuse gamma-ray
background and to the dark matter signal. We introduce DMFIT, a tool that
allows one to fit gamma-ray emission from pair-annihilation of generic particle
dark matter models and to extract information on the mass, normalization and
annihilation branching ratios into Standard Model final states. We assess the
impact and systematic effects of background modeling and theoretical priors on
the reconstruction of dark matter particle properties. Our detailed simulations
demonstrate that for some well motivated supersymmetric dark matter setups with
one year of GLAST data it will be possible not only to significantly detect a
dark matter signal over background, but also to estimate the dark matter mass
and its dominant pair-annihilation mode.Comment: 37 pages, 16 figures, submitted to JCA
- …
