4,740 research outputs found

    Ferromagnetic coupling and magnetic anisotropy in molecular Ni(II) squares

    Full text link
    We investigated the magnetic properties of two isostructural Ni(II) metal complexes [Ni4Lb8] and [Ni4Lc8]. In each molecule the four Ni(II) centers form almost perfect regular squares. Magnetic coupling and anisotropy of single crystals were examined by magnetization measurements and in particular by high-field torque magnetometry at low temperatures. The data were analyzed in terms of an effective spin Hamiltonian appropriate for Ni(II) centers. For both compounds, we found a weak intramolecular ferromagnetic coupling of the four Ni(II) spins and sizable single-ion anisotropies of the easy-axis type. The coupling strengths are roughly identical for both compounds, whereas the zero-field-splitting parameters are significantly different. Possible reasons for this observation are discussed.Comment: 7 pages, 7 figure

    Field dependent anisotropy change in a supramolecular Mn(II)-[3x3] grid

    Full text link
    The magnetic anisotropy of a novel Mn(II)-[3x3] grid complex was investigated by means of high-field torque magnetometry. Torque vs. field curves at low temperatures demonstrate a ground state with S > 0 and exhibit a torque step due to a field induced level-crossing at B* \approx 7.5 T, accompanied by an abrupt change of magnetic anisotropy from easy-axis to hard-axis type. These observations are discussed in terms of a spin Hamiltonian formalism.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let

    Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry

    Full text link
    For powder samples of polynuclear metal complexes the dependence of the inelastic neutron scattering intensity on the momentum transfer Q is known to be described by a combination of so called interference terms. They reflect the interplay between the geometrical structure of the compound and the spatial properties of the wave functions involved in the transition. In this work, it is shown that the Q-dependence is strongly interrelated with the molecular symmetry of molecular nanomagnets, and, if the molecular symmetry is high enough, is actually completely determined by it. A general formalism connecting spatial symmetry and interference terms is developed. The arguments are detailed for cyclic spin clusters, as experimentally realized by e.g. the octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.Comment: 8 pages, 1 figures, REVTEX

    One Market, One Money, One Price?

    Get PDF
    The introduction of the euro was intended to integrate markets within Europe further, after the implementation of the 1992 Single Market Project. We examine the extent to which this objective has been achieved, by examining the degree of price dispersion between countries in the euro zone, compared to a control group of EU countries outside the euro zone. We also establish the role of exchange rate risk in hampering arbitrage by estimating the euro effect for subgroups within the euro zone, utilizing differences among EU countries in participation in the Exchange Rate Mechanism. Our results, in contrast with previous empirical research, suggest robustly that the euro has had a significant integrating effect.

    Quantum dynamics of the Neel vector in the antiferromagnetic molecular wheel CsFe8

    Full text link
    The inelastic neutron scattering (INS) spectrum is studied for the antiferromagnetic molecular wheel CsFe8, in the temperature range 2 - 60 K, and for transfer energies up 3.6 meV. A qualitative analysis shows that the observed peaks correspond to the transitions between the L-band states, from the ground state up to the S = 5 multiplet. For a quantitative analysis, the wheel is described by a microscopic spin Hamiltonian (SH), which includes the nearest-neighbor Heisenberg exchange interactions and uniaxial easy-axis single-ion anisotropy, characterized by the constants J and D, respectively. For a best-fit determination of J and D, the L band is modeled by an effective SH, and the effective SH concept extended such as to facilitate an accurate calculation of INS scattering intensities, overcoming difficulties with the dimension of the Hilbert space. The low-energy magnetism in CsFe8 is excellently described by the generic SH used. The two lowest states are characterized by a tunneling of the Neel vector, as found previously, while the higher-lying states are well described as rotational modes of the Neel vector.Comment: 12 pages, 10 figures, REVTEX4, to appear in PR

    Exchange-coupling constants, spin density map, and Q dependence of the inelastic neutron scattering intensity in single-molecule magnets

    Full text link
    The Q dependence of the inelastic neutron scattering (INS) intensity of transitions within the ground-state spin multiplet of single-molecule magnets (SMMs) is considered. For these transitions, the Q dependence is related to the spin density map in the ground state, which in turn is governed by the Heisenberg exchange interactions in the cluster. This provides the possibility to infer the exchange-coupling constants from the Q dependence of the INS transitions within the spin ground state. The potential of this strategy is explored for the M = +-10 -> +- 9 transition within the S = 10 multiplet of the molecule Mn12 as an example. The Q dependence is calculated for powder as well as single-crystal Mn12 samples for various exchange-coupling situations discussed in the literature. The results are compared to literature data on a powder sample of Mn12 and to measurements on an oriented array of about 500 single-crystals of Mn12. The calculated Q dependence exhibits significant variation with the exchange-coupling constants, in particular for a single-crystal sample, but the experimental findings did not permit an unambiguous determination. However, although challenging, suitable experiments are within the reach of today's instruments.Comment: 11 pages, 6 figures, REVTEX4, to appear in PR

    Field-induced level crossings in spin clusters: Thermodynamics and magneto-elastic instability

    Full text link
    Quantum spin clusters with dominant antiferromagnetic Heisenberg exchange interactions typically exhibit a sequence of field-induced level crossings in the ground state as function of magnetic field. For fields near a level crossing, the cluster can be approximated by a two-level Hamiltonian at low temperatures. Perturbations, such as magnetic anisotropy or spin-phonon coupling, sensitively affect the behavior at the level-crossing points. The general two-level Hamiltonian of the spin system is derived in first-order perturbation theory, and the thermodynamic functions magnetization, magnetic torque, and magnetic specific heat are calculated. Then a magneto-elastic coupling is introduced and the effective two-level Hamilitonian for the spin-lattice system derived in the adiabatic approximation of the phonons. At the level crossings the system becomes unconditionally unstable against lattice distortions due to the effects of magnetic anisotropy. The resultant magneto-elastic instabilities at the level crossings are discussed, as well as the magnetic behavior.Comment: 13 pages, 8 figures, REVTEX

    Approximating parabolas as natural bounds of Heisenberg spectra: Reply on the comment of O. Waldmann

    Full text link
    O. Waldmann has shown that some spin systems, which fulfill the condition of a weakly homogeneous coupling matrix, have a spectrum whose minimal or maximal energies are rather poorly approximated by a quadratic dependence on the total spin quantum number. We comment on this observation and provide the new argument that, under certain conditions, the approximating parabolas appear as natural bounds of the spectrum generated by spin coherent states.Comment: 2 pages, accepted for Europhysics Letter

    Many-spin effects in inelastic neutron scattering and electron paramagnetic resonance of molecular nanomagnets

    Full text link
    Many molecular magnetic clusters, such as single-molecule magnets, are characterized by spin ground states with defined total spin S exhibiting zero-field-splittings. In this work, the spectroscopic intensities of the transitions within the ground-state multiplet are analyzed. In particular, the effects of a mixing with higher-lying spin multiplets, which is produced by anisotropic interactions and is neglected in the standard single-spin description, are investigated systematically for the two experimental techniques of inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR), with emphasis on the former technique. The spectroscopic transition intensities are calculated analytically by constructing corresponding effective spin operators perturbationally up to second order and consequently using irreducible tensor operator techniques. Three main effects of spin mixing are observed. Firstly, a pronounced dependence of the INS intensities on the momentum transfer Q, with a typical oscillatory behavior, emerges in first order, signaling the many-spin nature of the wave functions in exchange-coupled clusters. Secondly, as compared to the results of a first-order calculation, the intensities of the transitions within the spin multiplet are affected differently by spin mixing. This allows one, thirdly, to differentiate the higher-order contributions to the cluster magnetic anisotropy which come from the single-ion ligand-field terms and spin mixing, respectively. The analytical results are illustrated by means of the three examples of an antiferromagnetic heteronuclear dimer, the Mn-[3 x 3] grid molecule, and the single-molecule magnet Mn12.Comment: 18 pages, 3 figures, REVTEX4, to appear in PR

    The even-odd effect in short antiferromagnetic Heisenberg chains

    Full text link
    Motivated by recent experiments on chemically synthesized magnetic molecular chains we investigate the lowest lying energy band of short spin-ss antiferromagnetic Heisenberg chains focusing on effects of open boundaries. By numerical diagonalization we find that the Land\'e pattern in the energy levels, i.e. E(S) \propto S(S+1) for total spin S, known from e.g. ring-shaped nanomagnets, can be recovered in odd-membered chains while strong deviations are found for the lowest excitations in chains with an even number of sites. This particular even-odd effect in the short Heisenberg chains cannot be explained by simple effective Hamiltonians and symmetry arguments. We go beyond these approaches, taking into account quantum fluctuations by means of a path integral description and the valence bond basis, but the resulting quantum edge-spin picture which is known to work well for long chains does not agree with the numerical results for short chains and cannot explain the even-odd effect. Instead, by analyzing also the classical chain model, we show that spatial fluctuations dominate the physical behavior in short chains, with length N < exp(\pi s), for any spin s. Such short chains are found to display a unique behavior, which is not related to the thermodynamic limit and cannot be described well by theories developed for this regime.Comment: 25 pages, 16 figure
    corecore