1,011 research outputs found

    A new interpretation of dielectric data in molecular glass formers

    Get PDF
    Literature dielectric data of glycerol, propylene carbonate and ortho-terphenyl (OTP) show that the measured dielectric relaxation is a decade faster than the Debye expectation, but still a decade slower than the breakdown of the shear modulus. From a comparison of time scales, the dielectric relaxation seems to be due to a process which relaxes not only the molecular orientation, but the entropy, the short-range order and the density as well. On the basis of this finding, we propose an alternative to the Gemant-DiMarzio-Bishop extension of the Debye picture.Comment: 7 pages, 4 figures, 68 references; 3. version extended following referee advic

    Scaling the Temperature-dependent Boson Peak of Vitreous Silica with the high-frequency Bulk Modulus derived from Brillouin Scattering Data

    Get PDF
    The position and strength of the boson peak in silica glass vary considerably with temperature TT. Such variations cannot be explained solely with changes in the Debye energy. New Brillouin scattering measurements are presented which allow determining the TT-dependence of unrelaxed acoustic velocities. Using a velocity based on the bulk modulus, scaling exponents are found which agree with the soft-potential model. The unrelaxed bulk modulus thus appears to be a good measure for the structural evolution of silica with TT and to set the energy scale for the soft potentials.Comment: Accepted for publication in Physical Review Letter

    Fragility and compressibility at the glass transition

    Get PDF
    Isothermal compressibilities and Brillouin sound velocities from the literature allow to separate the compressibility at the glass transition into a high-frequency vibrational and a low-frequency relaxational part. Their ratio shows the linear fragility relation discovered by x-ray Brillouin scattering [1], though the data bend away from the line at higher fragilities. Using the concept of constrained degrees of freedom, one can show that the vibrational part follows the fragility-independent Lindemann criterion; the fragility dependence seems to stem from the relaxational part. The physical meaning of this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco, Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after refereein

    The Raman coupling function in amorphous silica and the nature of the long wavelength excitations in disordered systems

    Full text link
    New Raman and incoherent neutron scattering data at various temperatures and molecular dynamic simulations in amorphous silica, are compared to obtain the Raman coupling coefficient C(ω)C(\omega) and, in particular, its low frequency limit. This study indicates that in the ω0\omega \to 0 limit C(ω)C(\omega) extrapolates to a non vanishing value, giving important indications on the characteristics of the vibrational modes in disordered materials; in particular our results indicate that even in the limit of very long wavelength the local disorder implies non-regular local atomic displacements.Comment: Revtex, 4 ps figure

    Dynamic rotor mode in antiferromagnetic nanoparticles

    Get PDF
    We present experimental, numerical, and theoretical evidence for a new mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8 nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all measured neutron data and reveal that thermally activated spin canting gives rise to a new type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The frequency of the rotor mode behaves in fair agreement with a simple analytical model, based on a high temperature approximation of the generally accepted Hamiltonian of the system. The extracted model parameters, as the magnetic interaction and the axial anisotropy, are in excellent agreement with results from Mossbauer spectroscopy

    Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts

    Get PDF
    In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time

    Tunka-Rex: energy reconstruction with a single antenna station (ARENA 2016)

    Full text link
    The Tunka-Radio extension (Tunka-Rex) is a radio detector for air showers in Siberia. From 2012 to 2014, Tunka-Rex operated exclusively together with its host experiment, the air-Cherenkov array Tunka-133, which provided trigger, data acquisition, and an independent air-shower reconstruction. It was shown that the air-shower energy can be reconstructed by Tunka-Rex with a precision of 15\% for events with signal in at least 3 antennas, using the radio amplitude at a distance of 120\,m from the shower axis as an energy estimator. Using the reconstruction from the host experiment Tunka-133 for the air-shower geometry (shower core and direction), the energy estimator can in principle already be obtained with measurements from a single antenna, close to the reference distance. We present a method for event selection and energy reconstruction, requiring only one antenna, and achieving a precision of about 20\%. This method increases the effective detector area and lowers thresholds for zenith angle and energy, resulting in three times more events than in the standard reconstruction

    Self- and Collective Dynamics of Syndiotactic Poly(methylmethacrylate). A Combined Study by Quasielastic Neutron Scattering and Atomistic Molecular Dynamics Simulations

    Get PDF
    We have investigated the molecular dynamics of syndiotactic poly(methyl methacrylate) well above the glass transition by combining quasielastic neutron scattering and fully atomistic computer simulations. The incoherent scattering measured by backscattering on a sample with deuterated ester methyl groups has revealed the single-particle motions of hydrogens in the main chain and in the R-methyl groups. Moreover, with neutron spin-echo experiments on the fully deuterated sample we have accessed the collective motions at the two first maxima of the structure factor. The simulated cell, which has been previously validated regarding the structural properties [Genix, A.-C.; et al. Macromolecules 2006, 39, 3947], shows a dynamical behavior that, allowing a shift in temperature, reproduces very accurately all the experimental results. The combined analysis of both sets of data has shown that: (i) The segmental relaxation involving backbone atoms deviates from Gaussian behavior. (ii) The dynamics is extremely heterogeneous: in addition to the subdiffusion associated with the R-process and the methyl group rotations, we have found indications of a rotational motion of the ester side group around the main chain. (iii) At a given momentum transfer and depending on the molecular groups considered, the time scales for collective motion are spread over about 1 order of magnitude, the correlations involving the main chain decaying much more slowly than those relating side groups. (iv) At the length scale characteristic for the overall periodicity of the system (that corresponding to the first structure factor peak), the experimentally observed collective dynamics relates to the backbone motions and is of interchain character; there, coherency effects are observed for all correlations, though side groups display weaker collectivity. (v) At the second structure factor peak, coherency remains only for correlations involving the main chains
    corecore