1,011 research outputs found
A new interpretation of dielectric data in molecular glass formers
Literature dielectric data of glycerol, propylene carbonate and
ortho-terphenyl (OTP) show that the measured dielectric relaxation is a decade
faster than the Debye expectation, but still a decade slower than the breakdown
of the shear modulus. From a comparison of time scales, the dielectric
relaxation seems to be due to a process which relaxes not only the molecular
orientation, but the entropy, the short-range order and the density as well. On
the basis of this finding, we propose an alternative to the
Gemant-DiMarzio-Bishop extension of the Debye picture.Comment: 7 pages, 4 figures, 68 references; 3. version extended following
referee advic
Scaling the Temperature-dependent Boson Peak of Vitreous Silica with the high-frequency Bulk Modulus derived from Brillouin Scattering Data
The position and strength of the boson peak in silica glass vary considerably
with temperature . Such variations cannot be explained solely with changes
in the Debye energy. New Brillouin scattering measurements are presented which
allow determining the -dependence of unrelaxed acoustic velocities. Using a
velocity based on the bulk modulus, scaling exponents are found which agree
with the soft-potential model. The unrelaxed bulk modulus thus appears to be a
good measure for the structural evolution of silica with and to set the
energy scale for the soft potentials.Comment: Accepted for publication in Physical Review Letter
Fragility and compressibility at the glass transition
Isothermal compressibilities and Brillouin sound velocities from the
literature allow to separate the compressibility at the glass transition into a
high-frequency vibrational and a low-frequency relaxational part. Their ratio
shows the linear fragility relation discovered by x-ray Brillouin scattering
[1], though the data bend away from the line at higher fragilities. Using the
concept of constrained degrees of freedom, one can show that the vibrational
part follows the fragility-independent Lindemann criterion; the fragility
dependence seems to stem from the relaxational part. The physical meaning of
this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco,
Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after
refereein
The Raman coupling function in amorphous silica and the nature of the long wavelength excitations in disordered systems
New Raman and incoherent neutron scattering data at various temperatures and
molecular dynamic simulations in amorphous silica, are compared to obtain the
Raman coupling coefficient and, in particular, its low frequency
limit. This study indicates that in the limit
extrapolates to a non vanishing value, giving important indications on the
characteristics of the vibrational modes in disordered materials; in particular
our results indicate that even in the limit of very long wavelength the local
disorder implies non-regular local atomic displacements.Comment: Revtex, 4 ps figure
Dynamic rotor mode in antiferromagnetic nanoparticles
We present experimental, numerical, and theoretical evidence for a new mode
of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering
experiments on 8 nm particles of hematite display a loss of diffraction
intensity with temperature, the intensity vanishing around 150 K. However, the
signal from inelastic neutron scattering remains above that temperature,
indicating a magnetic system in constant motion. In addition, the precession
frequency of the inelastic magnetic signal shows an increase above 100 K.
Numerical Langevin simulations of spin dynamics reproduce all measured neutron
data and reveal that thermally activated spin canting gives rise to a new type
of coherent magnetic precession mode. This "rotor" mode can be seen as a
high-temperature version of superparamagnetism and is driven by exchange
interactions between the two magnetic sublattices. The frequency of the rotor
mode behaves in fair agreement with a simple analytical model, based on a high
temperature approximation of the generally accepted Hamiltonian of the system.
The extracted model parameters, as the magnetic interaction and the axial
anisotropy, are in excellent agreement with results from Mossbauer
spectroscopy
Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts
In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time
Tunka-Rex: energy reconstruction with a single antenna station (ARENA 2016)
The Tunka-Radio extension (Tunka-Rex) is a radio detector for air showers in
Siberia. From 2012 to 2014, Tunka-Rex operated exclusively together with its
host experiment, the air-Cherenkov array Tunka-133, which provided trigger,
data acquisition, and an independent air-shower reconstruction. It was shown
that the air-shower energy can be reconstructed by Tunka-Rex with a precision
of 15\% for events with signal in at least 3 antennas, using the radio
amplitude at a distance of 120\,m from the shower axis as an energy estimator.
Using the reconstruction from the host experiment Tunka-133 for the air-shower
geometry (shower core and direction), the energy estimator can in principle
already be obtained with measurements from a single antenna, close to the
reference distance. We present a method for event selection and energy
reconstruction, requiring only one antenna, and achieving a precision of about
20\%. This method increases the effective detector area and lowers thresholds
for zenith angle and energy, resulting in three times more events than in the
standard reconstruction
Self- and Collective Dynamics of Syndiotactic Poly(methylmethacrylate). A Combined Study by Quasielastic Neutron Scattering and Atomistic Molecular Dynamics Simulations
We have investigated the molecular dynamics of syndiotactic poly(methyl methacrylate) well above the glass transition by combining quasielastic neutron scattering and fully atomistic computer simulations. The incoherent scattering measured by backscattering on a sample with deuterated ester methyl groups has revealed the single-particle motions of hydrogens in the main chain and in the R-methyl groups. Moreover, with neutron spin-echo experiments on the fully deuterated sample we have accessed the collective motions at the two first maxima of the structure factor. The simulated cell, which has been previously validated regarding the structural properties [Genix, A.-C.; et al. Macromolecules 2006, 39, 3947], shows a dynamical behavior that, allowing a shift in temperature, reproduces very accurately all the experimental results. The combined analysis of both sets of data has shown that: (i) The segmental relaxation involving backbone atoms deviates from Gaussian behavior. (ii) The dynamics is extremely heterogeneous: in addition to the subdiffusion associated with the R-process and the methyl group rotations, we have found indications of a rotational motion of the ester side group around the main chain. (iii) At a given momentum transfer and depending on the molecular groups considered, the time scales for collective motion are spread over about 1 order of magnitude, the correlations involving the main chain decaying much more slowly than those relating side groups. (iv) At the length scale characteristic for the overall periodicity of the system (that corresponding to the first structure factor peak), the experimentally observed collective dynamics relates to the backbone motions and is of interchain character; there, coherency effects are observed for all correlations, though side groups display weaker collectivity. (v) At the second structure factor peak, coherency remains only for correlations involving the main chains
- …
