975 research outputs found
Compact phases of polymers with hydrogen bonding
We propose an off-lattice model for a self-avoiding homopolymer chain with
two different competing attractive interactions, mimicking the hydrophobic
effect and the hydrogen bond formation respectively. By means of Monte Carlo
simulations, we are able to trace out the complete phase diagram for different
values of the relative strength of the two competing interactions. For strong
enough hydrogen bonding, the ground state is a helical conformation, whereas
with decreasing hydrogen bonding strength, helices get eventually destabilized
at low temperature in favor of more compact conformations resembling
-sheets appearing in native structures of proteins. For weaker hydrogen
bonding helices are not thermodynamically relevant anymore.Comment: 5 pages, 3 figures; revised version published in PR
Dynamical Scaling: the Two-Dimensional XY Model Following a Quench
To sensitively test scaling in the 2D XY model quenched from
high-temperatures into the ordered phase, we study the difference between
measured correlations and the (scaling) results of a Gaussian-closure
approximation. We also directly compare various length-scales. All of our
results are consistent with dynamical scaling and an asymptotic growth law , though with a time-scale that depends on the
length-scale in question. We then reconstruct correlations from the
minimal-energy configuration consistent with the vortex positions, and find
them significantly different from the ``natural'' correlations --- though both
scale with . This indicates that both topological (vortex) and
non-topological (``spin-wave'') contributions to correlations are relevant
arbitrarily late after the quench. We also present a consistent definition of
dynamical scaling applicable more generally, and emphasize how to generalize
our approach to other quenched systems where dynamical scaling is in question.
Our approach directly applies to planar liquid-crystal systems.Comment: 10 pages, 10 figure
Outcome of proximal esophageal cancer after definitive combined chemo-radiation: a Swiss multicenter retrospective study.
To report oncological outcomes and toxicity rates, of definitive platin-based chemoradiadiationtherapy (CRT) in the management of proximal esophageal cancer.
We retrospectively reviewed the medical records of patients with cT1-4 cN0-3 cM0 cervical esophageal cancer (CEC) (defined as tumors located below the inferior border of the cricoid cartilage, down to 22 cm from the incisors) treated between 2004 and 2013 with platin-based definitive CRT in four Swiss institutions. Acute and chronic toxicities were retrospectively scored using the National Cancer Institute's Common Terminology Criteria for Adverse Events, version 4.0 (CTCAE-NCI v.4.0). Primary endpoint was loco-regional control (LRC). We also evaluated overall survival (OS) and disease-free survival (DFS) rates. The influence of patient- and treatment related features have been calculated using the Log-rank test and multivariate Cox proportional hazards model.
We enrolled a total of 55 patients. Median time interval from diagnosis to CRT was 78 days (6-178 days). Median radiation dose was 56Gy (28-72Gy). Induction chemotherapy (ICHT) was delivered in 58% of patients. With a median follow up of 34 months (6-110months), actuarial 3-year LRC, DFS and OS were 52% (95% CI: 37-67%), 35% (95% CI: 22-50%) and 52% (95% CI: 37-67%), respectively. Acute toxicities (dysphagia, pain, skin-toxicity) ranged from grade 0 - 4 without significant dose-dependent differences. On univariable analyses, the only significant prognostic factor for LRC was the time interval > 78 days from diagnosis to CRT. On multivariable analysis, total radiation dose >56Gy (p <0.006) and ICHT (p < 0.004) were statistically significant positive predictive factors influencing DFS and OS.
Definitive CRT is a reliable therapeutic option for proximal esophageal cancer, with acceptable treatment related toxicities. Higher doses and ICHT may improve OS and DFS and. These findings need to be confirmed in further prospective studies
Helioseismic Holography of an Artificial Submerged Sound Speed Perturbation and Implications for the Detection of Pre-Emergence Signatures of Active Regions
We use a publicly available numerical wave-propagation simulation of Hartlep
et al. 2011 to test the ability of helioseismic holography to detect signatures
of a compact, fully submerged, 5% sound-speed perturbation placed at a depth of
50 Mm within a solar model. We find that helioseismic holography as employed in
a nominal "lateral-vantage" or "deep-focus" geometry employing quadrants of an
annular pupil is capable of detecting and characterizing the perturbation. A
number of tests of the methodology, including the use of a plane-parallel
approximation, the definition of travel-time shifts, the use of different
phase-speed filters, and changes to the pupils, are also performed. It is found
that travel-time shifts made using Gabor-wavelet fitting are essentially
identical to those derived from the phase of the Fourier transform of the
cross-covariance functions. The errors in travel-time shifts caused by the
plane-parallel approximation can be minimized to less than a second for the
depths and fields of view considered here. Based on the measured strength of
the mean travel-time signal of the perturbation, no substantial improvement in
sensitivity is produced by varying the analysis procedure from the nominal
methodology in conformance with expectations. The measured travel-time shifts
are essentially unchanged by varying the profile of the phase-speed filter or
omitting the filter entirely. The method remains maximally sensitive when
applied with pupils that are wide quadrants, as opposed to narrower quadrants
or with pupils composed of smaller arcs. We discuss the significance of these
results for the recent controversy regarding suspected pre-emergence signatures
of active regions
Helioseismology of Sunspots: A Case Study of NOAA Region 9787
Various methods of helioseismology are used to study the subsurface
properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen
because it is axisymmetric, shows little evolution during 20-28 January 2002,
and was observed continuously by the MDI/SOHO instrument. (...) Wave travel
times and mode frequencies are affected by the sunspot. In most cases, wave
packets that propagate through the sunspot have reduced travel times. At short
travel distances, however, the sign of the travel-time shifts appears to depend
sensitively on how the data are processed and, in particular, on filtering in
frequency-wavenumber space. We carry out two linear inversions for wave speed:
one using travel-times and phase-speed filters and the other one using mode
frequencies from ring analysis. These two inversions give subsurface wave-speed
profiles with opposite signs and different amplitudes. (...) From this study of
AR9787, we conclude that we are currently unable to provide a unified
description of the subsurface structure and dynamics of the sunspot.Comment: 28 pages, 18 figure
Evaluation of the bloating potential and grazing performance of AC-Grazeland verses a mixed AC-Grazeland and Sainfoin pasture for beef cattle in southwest Saskatchewan
Non-Peer ReviewedThe potential benefits of grazing alfalfa (Medicago sativa L.) are well documented (e.g., high yields and forage quality, excellent animal gains) and thus, many livestock producers are interested in its use. However, alfalfa’s ability to cause bloating in cattle and potential death has caused many livestock producers to not consider grazing pure alfalfa stands or only alfalfa/grass mixtures in which the alfalfa constitutes less than 20% of the forage stand. The recent availability of AC-Grazeland (AC), a low bloat causing alfalfa cultivar, and the use of non-bloating legumes in mixture with alfalfa are reported grazing strategies to reduce the occurrence of bloating and may be a method to increase the ability to graze alfalfa in the pasture at higher proportions. The objective of this study was to evaluate the bloating potential or bloat reducing potential and animal grazing performance of AC verses a mixed AC and sainfoin (AC+S)
pasture. In 1998, one pasture (4.9 ac) was seeded to AC, while another pasture (4.4 ac) was seeded to an AC+S mixture. Seeding rate for the AC and Sainfoin (S) were 5 and 38 lbs per acre, respectively. Grazing of the two pastures were initially started in 2000 by an equal number of yearling steers. Grazing and forage data from 2002 and 2003 were used in this study. Yearling steers commenced grazing on the AC pasture at the early bud stage and the S was grazed at the early flower stage. Each steer on the AC pasture received a rumensin CRC bolus, while steers on the AC+S received no rumensin boluses. Results found that no bloating or bloat symptoms were observed in the cattle grazing from either forage treatment in 2002 and 2003. Average daily gains and total live production did not differ (P > 0.13) between pasture treatments.
Further research is needed to evaluate longevity of AC and AC+S pastures under different grazing management for southwest Saskatchewan
Can induced gravity isotropize Bianchi I, V, or IX Universes?
We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory
can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the
non--minimal coupling of gravity and the scalar field. The analytical results
that we found for the Brans-Dicke (BD) theory are now applied to the IG theory
which has ( being the square ratio of the Higgs to
Planck mass) in a cosmological era in which the IG--potential is not
significant. We find that the isotropization mechanism crucially depends on the
value of . Its smallness also permits inflationary solutions. For the
Bianch V model inflation due to the Higgs potential takes place afterwads, and
subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW
evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1
Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots
We show that the parametric correlations of the conductance peak amplitudes
of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime
become universal upon an appropriate scaling of the parameter. We compute the
universal forms of this correlator for both cases of conserved and broken time
reversal symmetry. For a symmetric dot the correlator is independent of the
details in each lead such as the number of channels and their correlation. We
derive a new scaling, which we call the rotation scaling, that can be computed
directly from the dot's eigenfunction rotation rate or alternatively from the
conductance peak heights, and therefore does not require knowledge of the
spectrum of the dot. The relation of the rotation scaling to the level velocity
scaling is discussed. The exact analytic form of the conductance peak
correlator is derived at short distances. We also calculate the universal
distributions of the average level width velocity for various values of the
scaled parameter. The universality is illustrated in an Anderson model of a
disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure
Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial
We derive some new structural results for the transfer matrix of
square-lattice Potts models with free and cylindrical boundary conditions. In
particular, we obtain explicit closed-form expressions for the dominant (at
large |q|) diagonal entry in the transfer matrix, for arbitrary widths m, as
the solution of a special one-dimensional polymer model. We also obtain the
large-q expansion of the bulk and surface (resp. corner) free energies for the
zero-temperature antiferromagnet (= chromatic polynomial) through order q^{-47}
(resp. q^{-46}). Finally, we compute chromatic roots for strips of widths 9 <=
m <= 12 with free boundary conditions and locate roughly the limiting curves.Comment: 111 pages (LaTeX2e). Includes tex file, three sty files, and 19
Postscript figures. Also included are Mathematica files data_CYL.m and
data_FREE.m. Many changes from version 1: new material on series expansions
and their analysis, and several proofs of previously conjectured results.
Final version to be published in J. Stat. Phy
Dynamics of Brane-World Cosmological Models
We show that generically the initial singularity is isotropic in spatially
homogeneous cosmological models in the brane-world scenario. We then argue that
it is plausible that the initial singularity is isotropic in typical brane
world cosmological models. Therefore, brane cosmology naturally gives rise to a
set of initial data that provide the conditions for inflation to subsequently
take place, thereby solving the initial conditions problem and leading to a
self--consistent and viable cosmology.Comment: Final version. To appear in Physical Revie
- …
