466 research outputs found

    Multifractality of wavefunctions at the quantum Hall transition revisited

    Get PDF
    We investigate numerically the statistics of wavefunction amplitudes ψ(r)\psi({\bf r}) at the integer quantum Hall transition. It is demonstrated that in the limit of a large system size the distribution function of ψ2|\psi|^2 is log-normal, so that the multifractal spectrum f(α)f(\alpha) is exactly parabolic. Our findings lend strong support to a recent conjecture for a critical theory of the quantum Hall transition.Comment: 4 pages Late

    Optical activity of neutrinos and antineutrinos

    Full text link
    Using the one-loop helicity amplitudes for low-energy νγνγ\nu\gamma\to\nu\gamma and νˉγνˉγ\bar\nu\gamma\to\bar\nu\gamma scattering in the standard model with massless neutrinos, we study the optical activity of a sea of neutrinos and antineutrinos. In particular, we estimate the values of the index of refraction and rotary power of this medium in the absence of dispersion.Comment: Additional reference

    Ordering dynamics of the driven lattice gas model

    Full text link
    The evolution of a two-dimensional driven lattice-gas model is studied on an L_x X L_y lattice. Scaling arguments and extensive numerical simulations are used to show that starting from random initial configuration the model evolves via two stages: (a) an early stage in which alternating stripes of particles and vacancies are formed along the direction y of the driving field, and (b) a stripe coarsening stage, in which the number of stripes is reduced and their average width increases. The number of stripes formed at the end of the first stage is shown to be a function of L_x/L_y^\phi, with \phi ~ 0.2. Thus, depending on this parameter, the resulting state could be either single or multi striped. In the second, stripe coarsening stage, the coarsening time is found to be proportional to L_y, becoming infinitely long in the thermodynamic limit. This implies that the multi striped state is thermodynamically stable. The results put previous studies of the model in a more general framework

    Weak Localization and Integer Quantum Hall Effect in a Periodic Potential

    Full text link
    We consider magnetotransport in a disordered two-dimensional electron gas in the presence of a periodic modulation in one direction. Existing quasiclassical and quantum approaches to this problem account for Weiss oscillations in the resistivity tensor at moderate magnetic fields, as well as a strong modulation-induced modification of the Shubnikov-de Haas oscillations at higher magnetic fields. They do not account, however, for the operation at even higher magnetic fields of the integer quantum Hall effect, for which quantum interference processes are responsible. We then introduce a field-theory approach, based on a nonlinear sigma model, which encompasses naturally both the quasiclassical and quantum-mechanical approaches, as well as providing a consistent means of extending them to include quantum interference corrections. A perturbative renormalization-group analysis of the field theory shows how weak localization corrections to the conductivity tensor may be described by a modification of the usual one-parameter scaling, such as to accommodate the anisotropy of the bare conductivity tensor. We also show how the two-parameter scaling, conjectured as a model for the quantum Hall effect in unmodulated systems, may be generalized similarly for the modulated system. Within this model we illustrate the operation of the quantum Hall effect in modulated systems for parameters that are realistic for current experiments.Comment: 15 pages, 4 figures, ReVTeX; revised version with condensed introduction; two figures taken out; reference adde

    WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors

    Get PDF
    Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1-8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22-6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12-20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis

    Wave function multifractality and dephasing at metal-insulator and quantum Hall transitions

    Full text link
    We analyze the critical behavior of the dephasing rate induced by short-range electron-electron interaction near an Anderson transition of metal-insulator or quantum Hall type. The corresponding exponent characterizes the scaling of the transition width with temperature. Assuming no spin degeneracy, the critical behavior can be studied by performing the scaling analysis in the vicinity of the non-interacting fixed point, since the latter is stable with respect to the interaction. We combine an analytical treatment (that includes the identification of operators responsible for dephasing in the formalism of the non-linear sigma-model and the corresponding renormalization-group analysis in 2+ϵ2+\epsilon dimensions) with numerical simulations on the Chalker-Coddington network model of the quantum Hall transition. Finally, we discuss the current understanding of the Coulomb interaction case and the available experimental data.Comment: 33 pages, 7 figures, elsart styl

    The impact of working memory load on task execution and online plan adjustment during multitasking in a virtual environment

    Get PDF
    Three experiments investigated the impact of working memory load on online plan adjustment during a test of multitasking in young, nonexpert, adult participants. Multitasking was assessed using the Edinburgh Virtual Errands Test (EVET). Participants were asked to memorize either good or poor plans for performing multiple errands and were assessed both on task completion and on the extent to which they modified their plans during EVET performance. EVET was performed twice, with and without a secondary task loading a component of working memory. In Experiment 1, articulatory suppression was used to load the phonological loop. In Experiment 2, oral random generation was used to load executive functions. In Experiment 3, spatial working memory was loaded with an auditory spatial localization task. EVET performance for both good- and poor-planning groups was disrupted by random generation and sound localization, but not by articulatory suppression. Additionally, people given a poor plan were able to overcome this initial disadvantage by modifying their plans online. It was concluded that, in addition to executive functions, multiple errands performance draws heavily on spatial, but not verbal, working memory resources but can be successfully completed on the basis of modifying plans online, despite a secondary task load

    Dimensional Crossover of Localisation and Delocalisation in a Quantum Hall Bar

    Full text link
    The 2-- to 1--dimensional crossover of the localisation length of electrons confined to a disordered quantum wire of finite width LyL_y is studied in a model of electrons moving in the potential of uncorrelated impurities. An analytical formula for the localisation length is derived, describing the dimensional crossover as function of width LyL_y, conductance gg and perpendicular magnetic field BB . On the basis of these results, the scaling analysis of the quantum Hall effect in high Landau levels, and the delocalisation transition in a quantum Hall wire are reconsidered.Comment: 12 pages, 7 figure

    Hidden degree of freedom and critical states in a two-dimensional electron gas in the presence of a random magnetic field

    Full text link
    We establish the existence of a hidden degree of freedom and the critical states of a spinless electron system in a spatially-correlated random magnetic field with vanishing mean. Whereas the critical states are carried by the zero-field contours of the field landscape, the hidden degree of freedom is recognized as being associated with the formation of vortices in these special contours. It is argued that, as opposed to the coherent backscattering mechanism of weak localization, a new type of scattering processes in the contours controls the underlying physics of localization in the random magnetic field system. In addition, we investigate the role of vortices in governing the metal-insulator transition and propose a renormalization-group diagram for the system under study.Comment: 17 pages, 16 figures; Figs. 1, 7, 9, and 10 have been reduced in quality for e-submissio

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    corecore