26 research outputs found

    Correction: “The 5th edition of The World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms” Leukemia. 2022 Jul;36(7):1720–1748

    Get PDF

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Solid-state direction-sensitive phase-angle monitor

    Full text link

    CASHEW APPLE PROCESSING

    No full text
    Not AvailableNot AvailableNot Availabl

    The effect of roller compaction and tableting stresses on pharmaceutical tablet performance

    No full text
    In this research the effect of two fundamental stresses, i.e. the tableting load and roller compaction pressure, on tablet disintegration were investigated. Excipient materials were roller compacted using a range of pressures, and tablets were produced by compressing the consequent granules at varying tableting loads. For this study mannitol, a brittle and soluble material, and microcrystalline cellulose, a deformable and insoluble material, were investigated at varying binary ratios. The tablets were characterised by analysis of the compactibility and a flow cell imaging method was utilised to investigate tablet disintegration in real-time. It was found that the effect of roller compaction (RC) pressure on tablet tensile strength and porosity was dependent on the tableting load used. At low tableting load, the tablet porosity varied depending on the RC pressure used, whereas the tensile strength was largely unaffected. The use of a high tableting load leads to the opposite effect being observed. The tensile strength was highly dependent on the RC pressure used. In terms of the tablet disintegration the RC pressure did not influence the disintegration behaviour when low tableting loads were used as the process was rapid. When higher tableting loads were used, tablets containing granules roller compacted using lower pressure expanded in size larger than when a low RC pressure was used. A low RC pressure also lead to a faster particle release rate was observed

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Investigating the effect of processing parameters on pharmaceutical tablet disintegration using a real-time particle imaging approach

    No full text
    Tablet disintegration is a fundamental parameter that is tested in vitro before a product is released to the market, to give confidence that the tablet will break up in vivo and that active drug will be available for absorption. Variations in tablet properties cause variation in disintegration behaviour. While the standardised pharmacopeial disintegration test can show differences in the speed of disintegration of different tablets, it does not give any mechanistic information about the underlying cause of the difference. With quantifiable disintegration data, and consequently an improved understanding into tablet disintegration, a more knowledge-based approach could be applied to the research and development of future tablet formulations. The aim of the present research was to introduce an alternative method which will enable a better understanding of tablet disintegration using a particle imaging approach. A purpose-built flow cell was employed capable of online observation of tablet disintegration, which can provide information about the changing tablet dimensions and the particles released with time. This additional information can improve the understanding of how different materials and process parameters affect tablet disintegration. Standard USP analysis was also carried out to evaluate and determine whether the flow cell method can suitably differentiate the disintegration behaviour of tablets produced using different processing parameters. Placebo tablets were produced with varying ratios of insoluble and soluble filler (mannitol and MCC, respectively) so that the effect of variation in the formulation can be investigated. To determine the effect of the stress applied during granulation and tableting on tablet disintegration behaviour, analysis was carried out on tablets produced using granular material compressed at 20 or 50 bar, where a tableting load of either 15 or 25 kN was used. By doing this the tablet disintegration was examined in terms of the tablet porosity by monitoring the tablet area and particle release. It was found that when 20 and 50 bar roller compaction pressure was used the USP analysis showed almost identical disintegration times for the consequent tablets. With the flow cell method a greater tablet swelling was observed for the lower pressure followed by steady tablet erosion. Additionally, more particles were released during disintegration due to the smaller granule size distribution within the tablet. When a higher tableting pressure was applied the tablet exhibited a delay in the time taken to reach the maximum swelling area, and slower tablet erosion and particle release were also observed, largely due to the tablet being much denser causing slower water uptake. This was in agreement with the USP analysis data. Overall it was confirmed by using both the standard USP analysis and flow cell method that the tablet porosity affects the tablet disintegration, whereby a more porous tablet disintegrates more slowly. But a more in-depth understanding was obtained using the flow cell method as it was determined that tablets will swell to varying degrees and release particles at different rates depending on the roller compaction and tableting pressure used

    Ageing studies on RTV coated insulator in salt-fog pollution

    No full text
    corecore