371 research outputs found
A Note on (Meta)stable Brane Configurations in MQCD
We examine the M-theory version of SQCD which is known as MQCD. In the IIA
limit, this theory appears to have a supersymmetry-breaking brane configuration
which corresponds to the meta-stable state of N=1 SU(Nc) SQCD. However, the
behavior at infinity of this non-supersymmetric brane construction differs from
that of the supersymmetric ground state of MQCD. We interpret this to mean that
it is not a meta-stable state in MQCD, but rather a state in another theory.
This provides a concrete example of the fact that, while MQCD accurately
describes the supersymmetric features of SCQD, it fails to reproduce its
non-supersymmetric features (such as meta-stable states) not only
quantitatively but also qualitatively.Comment: 30 pages, 7 figures, harvmac. v2 typo correcte
Induced QCD and Hidden Local ZN Symmetry
We show that a lattice model for induced lattice QCD which was recently
proposed by Kazakov and Migdal has a gauge symmetry which, in the strong
coupling phase, results in a local confinement where only color singlets are
allowed to propagate along links and all Wilson loops for non-singlets average
to zero. We argue that, if this model is to give QCD in its continuum limit, it
must have a phase transition. We give arguments to support presence of such a
phase transition
Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits
Observations have established that extremely compact, massive objects are
common in the universe. It is generally accepted that these objects are black
holes. As observations improve, it becomes possible to test this hypothesis in
ever greater detail. In particular, it is or will be possible to measure the
properties of orbits deep in the strong field of a black hole candidate (using
x-ray timing or with gravitational-waves) and to test whether they have the
characteristics of black hole orbits in general relativity. Such measurements
can be used to map the spacetime of a massive compact object, testing whether
the object's multipoles satisfy the strict constraints of the black hole
hypothesis. Such a test requires that we compare against objects with the
``wrong'' multipole structure. In this paper, we present tools for constructing
bumpy black holes: objects that are almost black holes, but that have some
multipoles with the wrong value. The spacetimes which we present are good deep
into the strong field of the object -- we do not use a large r expansion,
except to make contact with weak field intuition. Also, our spacetimes reduce
to the black hole spacetimes of general relativity when the ``bumpiness'' is
set to zero. We propose bumpy black holes as the foundation for a null
experiment: if black hole candidates are the black holes of general relativity,
their bumpiness should be zero. By comparing orbits in a bumpy spacetime with
those of an astrophysical source, observations should be able to test this
hypothesis, stringently testing whether they are the black holes of general
relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR
Quantifying integrated proteomic responses to iron stress in the globally important marine diazotroph trichodesmium
Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual ‘new’ nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55–60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean
Evidence Against Instanton Dominance of Topological Charge Fluctuations in QCD
The low-lying eigenmodes of the Dirac operator associated with typical gauge
field configurations in QCD encode, among other low-energy properties, the
physics behind the solution to the problem (i.e. the origin of the
mass), the nature of spontaneous chiral symmetry breaking, and the
physics of string-breaking, quark-antiquark pair production, and the OZI rule.
Moreover, the space-time chiral structure of these eigenmodes reflects the
space-time topological structure of the underlying gauge field. We present
evidence from lattice QCD on the local chiral structure of low Dirac eigenmodes
leading to the conclusion that topological charge fluctuations of the QCD
vacuum are not instanton-dominated. The result supports Witten's arguments that
topological charge is produced by confinement-related gauge fluctuations rather
than instantons.Comment: 35 pages, 11 figure
Sum rule for the backward spin polarizability of the nucleon from a backward dispersion relation
A new sum rule for , the backward spin polarizability of the
nucleon, is derived from a backward-angle dispersion relation. Taking into
account single- and multi-pion photoproduction in the s-channel up to the
energy 1.5 GeV and resonances in the t-channel with mass below 1.5 GeV, it is
found for the proton and neutron that = -39.5 +/- 2.4 and
= 52.5 +/- 2.4, respectively, in units of 10^{-4} fm^4.Comment: 10 pages, 1 figure, revtex. Submitted to Phys. Lett.
D-brane Decay in Two-Dimensional String Theory
We consider unstable D0-branes of two dimensional string theory, described by
the boundary state of Zamolodchikov and Zamolodchikov [hep-th/0101152]
multiplied by the Neumann boundary state for the time coordinate . In the
dual description in terms of the matrix model, this D0-brane is described
by a matrix eigenvalue on top of the upside down harmonic oscillator potential.
As suggested by McGreevy and Verlinde [hep-th/0304224], an eigenvalue rolling
down the potential describes D-brane decay. As the eigenvalue moves down the
potential to the asymptotic region it can be described as a free relativistic
fermion. Bosonizing this fermion we get a description of the state in terms of
a coherent state of the tachyon field in the asymptotic region, up to a
non-local linear field redefinition by an energy-dependent phase. This coherent
state agrees with the exponential of the closed string one-point function on a
disk with Sen's marginal boundary interaction for which describes D0-brane
decay.Comment: 19 pages, harvmac, minor change
Worldwide experience with a totally subcutaneous implantable defibrillator: Early results from the EFFORTLESS S-ICD registry
Aims The totally subcutaneous implantable-defibrillator (S-ICD) is a new alternative to the conventional transveno
Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron
The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2]
for the proton and neutron have been determined from measurements of polarised
cross section asymmetries in deep inelastic scattering of 27.5 GeV
longitudinally polarised positrons from polarised 1H and 3He internal gas
targets. The data were collected in the region above the nucleon resonances in
the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the
proton the contribution to the generalised Gerasimov-Drell-Hearn integral was
found to be substantial and must be included for an accurate determination of
the full integral. Furthermore the data are consistent with a QCD
next-to-leading order fit based on previous deep inelastic scattering data.
Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction
Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H,
3He, and 14N targets has been studied by the HERMES experiment at squared
four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20
GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the
nuclear transparency, was found to decrease with increasing coherence length of
quark-antiquark fluctuations of the virtual photon. The data provide clear
evidence of the interaction of the quark- antiquark fluctuations with the
nuclear medium.Comment: RevTeX, 5 pages, 3 figure
- …
