23 research outputs found

    A workstation environment for assessing relay performance

    No full text

    NEC groups and Klein surfaces

    No full text

    The action of the groups Dm × Dn on unbordered Klein surfaces

    No full text
    Every finite group G may act as an automorphism group of Klein surfaces either bordered or unbordered either orientable or non-orientable. For each group the minimum genus receives different names according to the topological features of the surface X on which it acts. If X is a bordered surface the genus is called the real genus ρ(G). If X is a non-orientable unbordered surface the genus is called the symmetric crosscap number of G and it is denoted by [(s)\tilde](G)(G). Finally if X is a Riemann surface it has two related parameters. If G only contains orientation-preserving automorphisms we have the strong symmetric genus, σ 0(G). If we allow orientation-reversing automorphisms we have the symmetric genus σ(G). In this work we obtain the strong symmetric genus and the symmetric crosscap number of the groups D m × D n . The symmetric genus of these groups is 1. However we introduce and obtain a new parameter, denoted by τ as the least genus g ≥ 2 of Riemann surfaces on which these groups act disregarding orientatio

    Topological Types Of P-Hyperelliptic Real Algebraic-Curves

    No full text
    Given a natural number p, a projective irreducible smooth algebraic curve V defined over R is called p-hyperelliptic if there exists a birational isomorphism of V, of order 2, such that V/ has genus p. This work is concerned with the existence of such curves according to their genus g and the number k of connected components of V(R). We prove that Harnack’s condition 1 k g is sufficient if V \ V (R) is connected. In case V \ V (R) non-connected, the following conditions 1 k g + 1 (g + k 1(2)), and either k = g + 1 − 2q for some q, 0 q p, or k 2p + 2 with = 1 for even p, = 2 for odd p, are necessary and sufficient for the existence of the curve
    corecore