2,581 research outputs found
Implications of short-range spatial variation of soil bulk density for adequate field-sampling protocols: methodology and results from two contrasting soils
Soil bulk density (BD) is measured during soil monitoring. Because it is spatially variable, an appropriate sampling protocol is required. This paper shows how information on short-range variability can be used to quantify uncertainty of estimates of mean BD and soil organic carbon on a volumetric basis (SOCv) at a sampling site with different sampling intensities. We report results from two contrasting study areas, with mineral soil and with peat. More sites should be investigated to develop robust protocols for national-scale monitoring, but these results illustrate the methodology. A 20 × 20-m2 monitoring site was considered and sampling protocols were evaluated under geostatistical models of our two study areas. At sites with local soil variability comparable to our mineral soil, sampling at 16 points (4 × 4 square grid of interval 5 m) would achieve a root mean square error (RMSE) of the sample mean value of both BD and SOCv of less than 5% of the mean (topsoil and subsoil). Pedotransfer functions (PTFs) gave predictions of mean soil BD at a sample site, comparable to our study area on mineral soil, with similar precision to a single direct measurement of BD. On peat soils comparable to our second study area, the mean BD for the monitoring site at depth 0–50 cm would be estimated with RMSE to be less than 5% of the mean with a sample of 16 cores, but at greater depths this criterion cannot be achieved with 25 cores or fewer
A Pilot Study Of Group Mindfulness‐Based Cognitive Therapy (Mbct) For Combat Veterans With Posttraumatic Stress Disorder (Ptsd)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98769/1/da22104.pd
Prevalence of sexual harassment among Norwegian female elite athletes in relation to sport type
Although it is often assumed that the prevalence of sexual harassment is different in different sports, this assumption has not been empirically tested. This study considers whether the experience of sexual harassment varies by sport. The female elite athletes (N = 553) in the study participated in 56 different sport disciplines. These were grouped as follows :1) team or individual sports; 2) extent to which clothing required for competition is revealing ; 3) gender structure (male-or female dominated membership statistics); and 4) gender culture (masculine, gender-neutral, or feminine). The data show that sexual harassment occurs in every sport group. Female elite athletes who participated in ‘masculine’ sports appear to experience more harassment than women in the other groups. We conclude that, when it comes to female athletes’ experiences of sexual harassment, sport type matters far less than sport participation per se
Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits
Observations have established that extremely compact, massive objects are
common in the universe. It is generally accepted that these objects are black
holes. As observations improve, it becomes possible to test this hypothesis in
ever greater detail. In particular, it is or will be possible to measure the
properties of orbits deep in the strong field of a black hole candidate (using
x-ray timing or with gravitational-waves) and to test whether they have the
characteristics of black hole orbits in general relativity. Such measurements
can be used to map the spacetime of a massive compact object, testing whether
the object's multipoles satisfy the strict constraints of the black hole
hypothesis. Such a test requires that we compare against objects with the
``wrong'' multipole structure. In this paper, we present tools for constructing
bumpy black holes: objects that are almost black holes, but that have some
multipoles with the wrong value. The spacetimes which we present are good deep
into the strong field of the object -- we do not use a large r expansion,
except to make contact with weak field intuition. Also, our spacetimes reduce
to the black hole spacetimes of general relativity when the ``bumpiness'' is
set to zero. We propose bumpy black holes as the foundation for a null
experiment: if black hole candidates are the black holes of general relativity,
their bumpiness should be zero. By comparing orbits in a bumpy spacetime with
those of an astrophysical source, observations should be able to test this
hypothesis, stringently testing whether they are the black holes of general
relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR
Logic Programming and Logarithmic Space
We present an algebraic view on logic programming, related to proof theory
and more specifically linear logic and geometry of interaction. Within this
construction, a characterization of logspace (deterministic and
non-deterministic) computation is given via a synctactic restriction, using an
encoding of words that derives from proof theory.
We show that the acceptance of a word by an observation (the counterpart of a
program in the encoding) can be decided within logarithmic space, by reducing
this problem to the acyclicity of a graph. We show moreover that observations
are as expressive as two-ways multi-heads finite automata, a kind of pointer
machines that is a standard model of logarithmic space computation
Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers
We have investigated the response of the acoustoelectric current driven by a
surface-acoustic wave through a quantum point contact in the closed-channel
regime. Under proper conditions, the current develops plateaus at integer
multiples of ef when the frequency f of the surface-acoustic wave or the gate
voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of
the current indicates that the interference of the surface-acoustic wave with
reflected waves matters. This is supported by the results obtained after a
second independent beam of surface-acoustic wave was added, traveling in
opposite direction. We have found that two sub-intervals can be distinguished
within the 1.1 MHz modulation period, where two different sets of plateaus
dominate the acoustoelectric-current versus gate-voltage characteristics. In
some cases, both types of quantized steps appeared simultaneously, though at
different current values, as if they were superposed on each other. Their
presence could result from two independent quantization mechanisms for the
acoustoelectric current. We point out that short potential barriers determining
the properties of our nominally long constrictions could lead to an additional
quantization mechanism, independent from those described in the standard model
of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low
Temp. Phys. in honour of Prof. F. Pobel
Cold Plasma Dispersion Relations in the Vicinity of a Schwarzschild Black Hole Horizon
We apply the ADM 3+1 formalism to derive the general relativistic
magnetohydrodynamic equations for cold plasma in spatially flat Schwarzschild
metric. Respective perturbed equations are linearized for non-magnetized and
magnetized plasmas both in non-rotating and rotating backgrounds. These are
then Fourier analyzed and the corresponding dispersion relations are obtained.
These relations are discussed for the existence of waves with positive angular
frequency in the region near the horizon. Our results support the fact that no
information can be extracted from the Schwarzschild black hole. It is concluded
that negative phase velocity propagates in the rotating background whether the
black hole is rotating or non-rotating.Comment: 27 pages, 11 figures accepted for publication in Gen. Relat. & Gravi
Quantized charge transport through a static quantum dot using a surface acoustic wave
We present a detailed study of the surface acoustic wave mediated quantized
transport of electrons through a split gate device containing an impurity
potential defined quantum dot within the split gate channel. A new regime of
quantized transport is observed at low RF powers where the surface acoustic
wave amplitude is comparable to the quantum dot charging energy. In this regime
resonant transport through the single-electron dot state occurs which we
interpret as turnstile-like operation in which the traveling wave amplitude
modulates the entrance and exit barriers of the quantum dot in a cyclic fashion
at GHz frequencies. For high RF powers, where the amplitude of the surface
acoustic wave is much larger than the quantum dot energies, the quantized
acoustoelectric current transport shows behavior consistent with previously
reported results. However, in this regime, the number of quantized current
plateaus observed and the plateau widths are determined by the properties of
the quantum dot, demonstrating that the microscopic detail of the potential
landscape in the split gate channel has a profound influence on the quantized
acoustoelectric current transport.Comment: 9 page
Nuttier Bubbles
We construct new explicit solutions of general relativity from double
analytic continuations of Taub-NUT spacetimes. This generalizes previous
studies of 4-dimensional nutty bubbles. One 5-dimensional locally
asymptotically AdS solution in particular has a special conformal boundary
structure of . We compute its boundary stress tensor and
relate it to the properties of the dual field theory. Interestingly enough, we
also find consistent 6-dimensional bubble solutions that have only one timelike
direction. The existence of such spacetimes with non-trivial topology is
closely related to the existence of the Taub-NUT(-AdS) solutions with more than
one NUT charge. Finally, we begin an investigation of generating new solutions
from Taub-NUT spacetimes and nuttier bubbles. Using the so-called Hopf duality,
we provide new explicit time-dependent backgrounds in six dimensions.Comment: 32 pages, 1 figure; v.3. typos corrected. Matches the published
versio
Dissipation and noise in adiabatic quantum pumps
We investigate the distribution function, the heat flow and the noise
properties of an adiabatic quantum pump for an arbitrary relation of pump
frequency and temperature. To achieve this we start with the
scattering matrix approach for ac-transport. This approach leads to expressions
for the quantities of interest in terms of the side bands of particles exiting
the pump. The side bands correspond to particles which have gained or lost a
modulation quantum . We find that our results for the pump
current, the heat flow and the noise can all be expressed in terms of a
parametric emissivity matrix. In particular we find that the current
cross-correlations of a multiterminal pump are directly related a to a
non-diagonal element of the parametric emissivity matrix. The approach allows a
description of the quantum statistical correlation properties (noise) of an
adiabatic quantum pump
- …
