10 research outputs found

    Interferon-regulatory factors during development of CD4 and CD8 thymocytes

    No full text
    Selection events in the thymus occur at the double-positive CD4+ CD8+ (DP) developmental stage leading either to further differentiation of the CD4+ and CD8+ lineages or to deletion. The interferon-regulatory factor IRF-1 has been implicated in signalling for T-cell death and also in CD8+ thymic differentiation. IRF-1 is an activator and IRF-2 a repressor of gene transcription regulated by type 1 interferons (IFN). To evaluate the role of IRF-1 and IRF-2 in the differentiation of CD4 and CD8 thymocytes, we analysed their DNA-binding activity before and after antigenic stimulation at different stages of thymic development and in peripheral T cells. Unseparated, double-positive and single-positive thymocytes as well as peripheral T lymphocytes from mice transgenic (tg) for a T-cell receptor (TCR), restricted either by major histocompatibility complex class I or class II, were stimulated by their nominal antigen. Our results demonstrate that the DNA-binding activity of IRF-2 and, weakly, that of IRF-1 are inducible in total thymocytes in response to antigen. There is no induction of IRF-1/IRF-2 binding activity at the double-positive stage of thymic development in the MHC class II-restricted model whereas in the MHC class I-restricted model IRF-1/IRF-2 activity is induced weakly. At the single-positive stage, antigen induces the IRF-1/IRF-2 DNA binding in both CD4+ and CD8+ thymocytes, but not in mature lymphocytes from the periphery. This pattern of expression suggests that IRF-1/IRF-2 binding activities resulting from antigen stimulation are developmentally regulated. No evidence for a selective role of IRF-1 in the development of the CD8+ lineage was found, however

    Developmental control of antigen-induced thymic transcription factors

    No full text
    Antigen engagement of the TCR may lead to activation of mature T cells while inducing deletion or positive selection of immature thymocytes. Using thymocytes from TCR transgenic mice recognizing the allo-antigen H-2Kb we investigated whether double-positive CD4+CD8+ (DP) thymocytes constitute a particular developmental stage where signals originating from surface receptor engagement will lead to distinct nuclear signaling. We show that the developmental control of transcription factors is apparent, at least at two levels. First, NF-AT binding activity was not induced in response to either antigen or phorbol myristate acetate (PMA)/lonomycin in DP thymocytes, whereas it was induced in single-positive CD8 thymocytes. Second, antigen induced a different pattern of transcription factor binding activities than PMA/lonomycin in DP thymocytes, AP-1 activity being selectively induced by antigen and NF-kappa B by PMA/lonomycin. Further we show that the transcription factors found to be induced in the DP thymic population were not susceptible to the inhibitory effect of cyclosporin A

    Two signaling pathways can lead to Fas ligand expression in CD8+ cytotoxic T lymphocyte clones

    No full text
    As shown previously, a given cytotoxic T lymphocyte (CTL) clone (KB5.C20) could be induced to express the Fas ligand (FasL) by either T cell receptor (TCR) engagement or phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation. In contrast, another CTL clone (BM3.3) has now been found to exert Fas-based cytotoxicity only after TCR engagement, but not after PMA/ionomycin stimulation. This suggested the existence of a PMA-insensitive, antigen-induced pathway leading to FasL expression. The inability of PMA to promote Fas-based cytotoxicity in BM3.3 cells was correlated with a defect in expression of the classical protein kinase C (PKC) isoforms alpha and beta I. In KB5.C20 cells depleted of PMA-sensitive PKC isoforms and thus no longer responsive to PMA, Fas-based cytotoxicity could still be induced via the TCR/CD3 pathway. On the other hand, a requirement for phosphatidylinositol-3 kinase (PI3K) selectively in this TCR/CD3-induced pathway was demonstrated by specific inhibition with wortmannin. These results suggest that FasL expression when induced via the TCR/CD3 involves PI3K, and when induced by PMA/ionomycin requires the expression of PMA-sensitive PKC isoforms absent in clone BM3.3. Additional data suggest that in neither case was NF-kappa B activation implicated in FasL expression

    Selective defect in antigen-induced TCR internalization at the immune synapse of CD8 T cells bearing the ZAP-70 (Y292F) mutation.

    No full text
    Abstract Cbl proteins have been implicated in ligand-induced TCR/CD3 down-modulation, but underlying mechanisms are unclear. We analyzed the effect of mutation of a cbl-binding site on ZAP-70 (ZAP-Y292F) on dynamics, internalization, and degradation of the TCR/CD3 complex in response to distinct stimuli. Naive CD8 T cells expressing the P14 transgenic TCR from ZAP-Y292F mice were selectively affected in TCR/CD3 down-modulation in response to antigenic stimulation, whereas neither anti-CD3 Ab-, and PMA-induced TCR down-modulation, nor constitutive receptor endocytosis/cycling were impaired. We further established that the defect in TCR/CD3 down-modulation in response to Ag was paralleled by an impaired TCR/CD3 internalization and CD3ζ degradation. Analysis of T/APC conjugates revealed that delayed redistribution of TCR at the T/APC contact zone was paralleled by a delay in TCR internalization in the synaptic zone in ZAP-Y292F compared with ZAP-wild-type T cells. Cbl recruitment to the synapse was also retarded in ZAP-Y292F T cells, although F-actin and LFA-1 redistribution was similar for both cell types. This study identifies a step involving ZAP-70/cbl interaction that is critical for rapid internalization of the TCR/CD3 complex at the CD8 T cell/APC synapse.</jats:p

    Consequences of intrathymic TCR engagement by partial agonist on selection events and peripheral T cell activation program

    No full text
    Functions elicited from mature T cells depend on the nature of the Ag. Thus, an agonist induces a larger set of cytokine responses than a partial agonist. Additionally, Ags present in the thymus influence both the selection of TCRs generated by gene rearrangement and the potential functional program of developing thymocytes. This can be approached by analysing the development of T cells in mice expressing the same transgenic TCR (tgTCR) under different conditions of intrathymic selection. H-2Kbm8 was found to act as a partial agonist for CD8+ T cells expressing a tgTCR specific for the H-2Kb alloantigen. Intrathymic exposure to full or to partial agonist affected the development of thymocytes at different stages, consistent with the respective CD8-independent and -dependent characteristic of the tgTCR/Ag interaction. The presence of the partial agonist led to the accumulation of a major population of thymocytes (tgTCR(high) CD4- CD8(low)) originating from TCR engagement at the immature single-positive CD8(low) stage as evidenced by: 1) results from reaggregated thymic organ culture in the presence of H-2(k/bm8) thymic stromal cells; 2) the absence of CD4+ thymocytes, the development of which depends on rearrangements of endogenous TCR alpha genes; and 3) the identification of the CD8(low) thymocytes as cycling cells. Peripheral CD8(low) T cells selected in an H-2(k/bm8) thymus expressed a partial functional program in response to H-2Kb, akin to the response of CD8(high) T cells to a partial agonist. The analysis of the molecular bases for partial reactivity revealed a correlation with inefficient AP-1, but efficient NF-kappaB transactivation

    Participants

    No full text
    corecore