25 research outputs found

    Shear Stability of EOR Polymers

    Full text link
    Summary An experimental study of shear stability of several high-molecular-weight polymers used as mobility-control agents in EOR projects has been performed in well-controlled conditions. The shearing device was made of a capillary tube with an internal diameter (ID) of 125 μm, through which polymer solution was injected at a controlled rate. The setup enables a precise measurement of the shear rate to which the polymer macromolecule is submitted. The degradation rate was measured by the viscosity loss induced by the passage into the capillary tube. The shear rate was gradually increased up to 106 sec–1 while checking degradation rate at each stage. Different commercial EOR polymer products were submitted to the test with polyacrylamide backbone and different substitution monomer groups. All macromolecules behave as flexible coils in solution. The parameters investigated were Molecular weight (between 6 and 20×106)Nature of substitution group (acrylate, ATBS/sulfonate, nVP/ vinyl-pyrrolidone)Salinity Polymer shear degradation increases with molecular weight and salinity, but decreases with the presence of acrylate, ATBS, and nVP. All results can be interpreted in terms of chain flexibility. The highly flexible polyacrylamide homopolymer is the most sensitive to shear degradation. Introduction of acrylate groups in the polymer chain induces some stability because of the rigidity provided by charge repulsion, which vanishes in the presence of high salinity because of the screening of acrylate negative charges. ATBS and VP groups, which are larger in size, provide significant chain rigidity, and thus better shear stability. It is also shown that some very-high-molecular-weight polymers, after passing the shearing device, attain a final viscosity lower than lower-molecular-weight products with the same chemical composition. This factor has to be taken into account in the final choice of a polymer for a given field application. As a comparison, although less popular today than 2 decades ago, xanthan gum (XG), which behaves like a semirigid rod, is shown to be much less sensitive to the shear-degradation test than the coiled polyacrylamides (Sorbie 1991).</jats:p

    Global impact of COVID-19 on stroke care

    No full text
    Background: The COVID-19 pandemic led to profound changes in the organization of health care systems worldwide. Aims: We sought to measure the global impact of the COVID-19 pandemic on the volumes for mechanical thrombectomy, stroke, and intracranial hemorrhage hospitalizations over a three-month period at the height of the pandemic (1 March–31 May 2020) compared with two control three-month periods (immediately preceding and one year prior). Methods: Retrospective, observational, international study, across 6 continents, 40 countries, and 187 comprehensive stroke centers. The diagnoses were identified by their ICD-10 codes and/or classifications in stroke databases at participating centers. Results: The hospitalization volumes for any stroke, intracranial hemorrhage, and mechanical thrombectomy were 26,699, 4002, and 5191 in the three months immediately before versus 21,576, 3540, and 4533 during the first three pandemic months, representing declines of 19.2% (95%CI, −19.7 to −18.7), 11.5% (95%CI, −12.6 to −10.6), and 12.7% (95%CI, −13.6 to −11.8), respectively. The decreases were noted across centers with high, mid, and low COVID-19 hospitalization burden, and also across high, mid, and low volume stroke/mechanical thrombectomy centers. High-volume COVID-19 centers (−20.5%) had greater declines in mechanical thrombectomy volumes than mid- (−10.1%) and low-volume (−8.7%) centers (p &lt; 0.0001). There was a 1.5% stroke rate across 54,366 COVID-19 hospitalizations. SARS-CoV-2 infection was noted in 3.9% (784/20,250) of all stroke admissions. Conclusion: The COVID-19 pandemic was associated with a global decline in the volume of overall stroke hospitalizations, mechanical thrombectomy procedures, and intracranial hemorrhage admission volumes. Despite geographic variations, these volume reductions were observed regardless of COVID-19 hospitalization burden and pre-pandemic stroke/mechanical thrombectomy volumes. © 2021 World Stroke Organization

    Search for excited tau leptons in the ττγ final state in proton-proton collisions at = 13 TeV

    No full text
    Results are presented for a test of the compositeness of the heaviest charged lepton, τ, using data collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC. The data were collected in 2016–2018 and correspond to an integrated luminosity of 138 fb−1. This analysis searches for tau lepton pair production in which one of the tau leptons is produced in an excited state and decays to a ground state tau lepton and a photon. The event selection consists of two isolated tau lepton decay candidates and a high-energy photon. The mass of the excited tau lepton is reconstructed using the missing transverse momentum in the event, assuming the momentum of the neutrinos from each tau lepton decay are aligned with the visible decay products. No excess of events above the standard model background prediction is observed. This null result is used to set lower bounds on the excited tau lepton mass. For a compositeness scale Λ equal to the excited tau lepton mass, excited tau leptons with masses below 4700 GeV are excluded at 95% confidence level; for Λ = 10 TeV this exclusion is set at 2800 GeV. This is the first experimental result covering this production and decay process in the excited tau mass range above 175 GeV

    Evidence for Similar Collectivity of High Transverse-Momentum Particles in p-Pb and Pb-Pb Collisions

    No full text
    Charged hadron elliptic anisotropies (v_{2}) are presented over a wide transverse momentum (p_{T}) range for proton-lead (pPb) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively. The data were recorded by the CMS experiment and correspond to integrated luminosities of 186 and 0.607 nb^{-1} for the pPb and PbPb systems, respectively. A four-particle cumulant analysis is performed using subevents separated in pseudorapidity to effectively suppress noncollective effects. At high p_{T} (p_{T}>8 GeV), significant positive v_{2} values that are similar between pPb and PbPb collisions at comparable charged particle multiplicities are observed. This observation suggests a common origin for the multiparticle collectivity for high-p_{T} particles in the two systems

    Search for high-mass resonances in a final state comprising a gluon and two hadronically decaying W bosons in proton-proton collisions at s = 13 TeV

    No full text
    A search for high-mass resonances decaying into a gluon, g, and two W bosons is presented. A Kaluza-Klein gluon, gKK, decaying in cascade via a scalar radion R, gKK → gR → gWW, is considered. The final state studied consists of three large-radius jets, two of which contain the products of hadronically decaying W bosons, and the third one the hadronization products of the gluon. The analysis is performed using proton-proton collision data at s = 13 TeV collected by the CMS experiment at the CERN LHC during 2016–2018, corresponding to an integrated luminosity of 138 fb−1. The masses of the gKK and R candidates are reconstructed as trijet and dijet masses, respectively. These are used for event categorization and signal extraction. No excess of data events above the standard model background expectation is observed. Upper limits are set on the product of the gKK production cross section and its branching fraction via a radion R to gWW. This is the first analysis examining the resonant WW+jet signature and setting limits on the two resonance masses in an extended warped extra-dimensional model

    Measurement of the inclusive WZ production cross section in pp collisions at s = 13.6 TeV

    No full text
    The inclusive WZ production cross section is measured in proton-proton collisions at a centre-of-mass energy of 13.6 TeV, using data collected during 2022 with the CMS detector, corresponding to an integrated luminosity of 34.7 fb−1. The measurement uses multileptonic final states and a simultaneous likelihood fit to the number of events in four different lepton flavour categories: eee, eeμ, μμe, and μμμ. The selection is optimized to minimize the number of background events, and relies on an efficient prompt lepton discrimination strategy. The WZ production cross section is measured in a phase space defined within a 30 GeV window around the Z boson mass, as σtotal (pp → WZ) = 55.2 ± 1.2 (stat) ± 1.2 (syst) ± 0.8 (lumi) ± 0.3 (theo) pb. In addition, the cross section is measured in a fiducial phase space closer to the detector-level requirements. All the measurements presented in this paper are in agreement with standard model predictions

    Measurement of the inclusive tt¯ cross section in final states with at least one lepton and additional jets with 302 pb−1 of pp collisions at s = 5.02 TeV

    No full text
    A measurement of the top quark pair (tt¯) production cross section in proton-proton collisions at a centre-of-mass energy of 5.02 TeV is presented. The data were collected at the LHC in autumn 2017, in dedicated runs with low-energy and low-intensity conditions with respect to the default configuration, and correspond to an integrated luminosity of 302 pb−1. The measurement is performed using events with one electron or muon, and multiple jets, at least one of them being identified as originating from a b quark (b tagged). Events are classified based on the number of all reconstructed jets and of b-tagged jets. Multivariate analysis techniques are used to enhance the separation between the signal and backgrounds. The measured cross section is 62.5±1.6stat−2.5+2.6syst±1.2lumi pb. A combination with the result in the dilepton channel based on the same data set yields a value of 62.3 ± 1.5 (stat) ± 2.4 (syst) ± 1.2 (lumi) pb, to be compared with the standard model prediction of 69.5−3.7+3.5 pb at next-to-next-to-leading order in perturbative quantum chromodynamics

    Search for a heavy resonance decaying into a Z and a Higgs boson in events with an energetic jet and two electrons, two muons, or missing transverse momentum in proton-proton collisions at s = 13 TeV

    No full text
    A search is presented for a heavy resonance decaying into a Z boson and a Higgs (H) boson. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb−1, recorded with the CMS experiment in the years 2016–2018. Resonance masses between 1.4 and 5 TeV are considered, resulting in large transverse momenta of the Z and H bosons. Final states that result from Z boson decays to pairs of electrons, muons, or neutrinos are considered. The H boson is reconstructed as a single large-radius jet, recoiling against the Z boson. Machine-learning flavour-tagging techniques are employed to identify decays of a Lorentz-boosted H boson into pairs of charm or bottom quarks, or into four quarks via the intermediate H → WW* and ZZ* decays. The analysis targets H boson decays that were not generally included in previous searches using the H → bb¯ channel. Compared with previous analyses, the sensitivity for high resonance masses is improved significantly in the channel where at most one b quark is tagged

    Girth and groomed radius of jets recoiling against isolated photons in lead-lead and proton-proton collisions at sNN=5.02 TeV

    Get PDF
    This Letter presents the first measurements of the groomed jet radius Rg and the jet girth g in events with an isolated photon recoiling against a jet in lead-lead (PbPb) and proton-proton (pp) collisions at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The observables Rg and g provide a quantitative measure of how narrow or broad a jet is. The analysis uses PbPb and pp data samples with integrated luminosities of 1.7 nb−1 and 301 pb−1, respectively, collected with the CMS experiment in 2018 and 2017. Events are required to have a photon with transverse momentum pTγ>100 GeV and at least one jet back-to-back in azimuth with respect to the photon and with transverse momentum pTjet such that pTjet/pTγ>0.4. The measured Rg and g distributions are unfolded to the particle level, which facilitates the comparison between the PbPb and pp results and with theoretical predictions. It is found that jets with pTjet/pTγ>0.8, i.e., those that closely balance the photon pTγ, are narrower in PbPb than in pp collisions. Relaxing the selection to include jets with pTjet/pTγ>0.4 reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference. This shows that selection bias effects associated with jet energy loss play an important role in the interpretation of jet substructure measurements

    Search for rare decays of the Z and Higgs bosons to a J/ψ or ψ(2S) meson and a photon in proton-proton collisions at s=13TeV

    Get PDF
    A search is presented for rare decays of the Image 1 and Higgs bosons to a photon and a Image 2 or a Image 3 meson, with the charmonium state subsequentially decaying to a pair of muons. The data set corresponds to an integrated luminosity of 123fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. No evidence for branching fractions of these rare decay channels larger than predicted in the standard model is observed. Upper limits at 95% confidence level are set: Image 4, Image 5, Image 6, and Image 7. The ratio of the Higgs boson coupling modifiers Image 8 is constrained to be in the interval (−157,+199) at 95% confidence level. Assuming Image 9, this interval becomes (−166,+208)
    corecore